

FFMK: A FAST AND FAULT-TOLERANT MICROKERNEL-BASED SYSTEM FOR EXASCALE COMPUTING

Amnon Barak Hermann Härtig Wolfgang E. Nagel Alexander Reinefeld Hebrew University Jerusalem (HUJI) TU Dresden, Operating Systems Group (TUDOS) TU Dresden, Center for Information Services and HPC (ZIH) Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB)

CARSTEN WEINHOLD, TU DRESDEN

The Hebrew University of Jerusalem

SYSTEM MODEL

M M M M M M

NODE ARCHITECTURE

FWQ BENCHMARK

NOISY LINUX?

NOISY LINUX?

Core

- Unmodified Linux programs (MPI, ...)
- L⁴Linux on L4 microkernel
- L4 microkernel controls the node
- Light-weight and low-noise if needed
- Linux process = L4 address space + thread
- Linux syscalls / exceptions: generic forwarding to L⁴Linux kernel

DECOUPLED THREADS

- Decoupling: move Linux thread to new L4 thread on its own core
- Linux syscall: Move back to Linux
- Direct I/O device access
- L4 syscalls:
 - Memory
 - Threads & Scheduling
 - Interrupts

L4 Microkernel / Hypervisor

Linux

App

L⁴Linux

DECOUPLED THREADS

NOISY LINUX?

NOISY LINUX?

Behavior: embarrassingly parallel

Behavior: **bulk-synchronous**

VENDOR OS [JURECA]

Adam Lackorzynski, Carsten Weinhold, Hermann Härtig, "Decoupled: Low-Effort Noise-Free Execution on Commodity Systems", ROSS 2016, June 2016, Kyoto, Japan

VENDOR OS [TAURUS]

Adam Lackorzynski, Carsten Weinhold, Hermann Härtig, "Decoupled: Low-Effort Noise-Free Execution on Commodity Systems", ROSS 2016, June 2016, Kyoto, Japan

EVALUATION SETUP

- Bare-metal access to Taurus:
 - Little time
 - Fewer cores
 - Different type of nodes
- Vendor OS: Linux 2.6.32 or 3.10 …
- Decoupled threads: L4Linux 4.4
- Custom Linux distribution

DECOUPLING: BSP

Adam Lackorzynski, Carsten Weinhold, Hermann Härtig, "Decoupled: Low-Effort Noise-Free Execution on Commodity Systems", ROSS 2016, June 2016, Kyoto, Japan

DECOUPLING: EP

Adam Lackorzynski, Carsten Weinhold, Hermann Härtig, "Decoupled: Low-Effort Noise-Free Execution on Commodity Systems", ROSS 2016, June 2016, Kyoto, Japan

- PhD student: internship at RIKEN, Japan
- Comparative study:
 - Hardware performance variation
 - 5 different CPU architectures
 - Light-weight kernel (McKernel)

Hannes Weisbach, Brian Kocoloski, Hermann Härtig, Yutaka Ishikawa, Balazs Gerofi, "Hardware Performance Variation: A Comparative Study using Lightweight Kernels", ISC'18, Frankfurt, Germany, June 2018

FWQ BENCHMARK

Hannes Weisbach, Brian Kocoloski, Hermann Härtig, Yutaka Ishikawa, Balazs Gerofi, "Hardware Performance Variation: A Comparative Study using Lightweight Kernels", ISC'18, Frankfurt, Germany, June 2018

8

DGEMM BENCHMARK

Hannes Weisbach, Brian Kocoloski, Hermann Härtig, Yutaka Ishikawa, Balazs Gerofi, "Hardware Performance Variation: A Comparative Study using Lightweight Kernels", ISC'18, Frankfurt, Germany, June 2018

IMBALANCED WORKLOADS

of Jerusalem

OVERDECOMPOSITION

RUN TIME

Unbalanced, no HT

Application: COSMO-SPECS+FD4

Unbalanced, no HT

CORE HOURS

Unbalanced, no HT

Application: CP2K

WIP: DECOUPLED INTERRUPTS

DECOUPLED THREADS

- Decoupling: move Linux thread to new L4 thread on its own core
- Linux syscall: Move back to Linux
- Direct I/O device access
- L4 syscalls:
 - Memory
 - Threads & Scheduling
 - Interrupts

L4 Microkernel / Hypervisor

Linux

App

L⁴Linux

IRQ FASTPATH

WAKE FROM IRQ

Work in progress: User-space handling of InfiniBand HCA interrupts

Adam Lackorzynski, Carsten Weinhold, Hermann Härtig, "Predictable Low-Latency Interrupt Response with General-Purpose Systems", OSPERT 2017, Dubrovnik, Kroatia, June 2017

NODE ARCHITECTURE

COORDINATED C/R

COORDINATED C/R

Available write bandwidth for each checkpoint:

MULTI-LEVEL C/R

The Hebrew University of Jerusalem

CORRELATED FAILURE

CORRELATED FAILURE

CORRELATED FAILURE

Graph problem:

- Find disjoint independent sets
- Find dominating subgraphs ("least correlated nodes")

Optimization problem:

- least correlated nodes
 for checkpoint
 distribution
- Consider: job run time,
 C/R cost, MTTI
- Minimize run time

NODE ARCHITECTURE

Balance workload

Balance workload

load=8load=10BADload=12load=13load=17load=12load=12load=12load=12load=12load=12

 Minimize communication between partitions

- Balance workload
- Minimize communication between partitions

load=10

load=8

- Balance workload
- Minimize communication between partitions
- Minimize migration

Compute new partitions fast

DIFFUSION

Diffusion graph topology from application topology

Diffusion coefficient weighted by interface length:

- Tasks migrated between neighbor partitions
- Better partition shape

DIFFUSION EXAMPLE

of Jerusalem

DIFFUSION EXAMPLE

Zoltan

Space-filling Curves

Diffusion

The Hebrew University of Jerusalem

DIFFUSION RESULTS

DIFFUSION SUMMARY

Best method to reduce:

- Migrations (less data movement)
- Edge cut (less communication)
- Load balance good, but not superior
- Flexible: uses communication graph specific to application

The Hebrew University of Jerusalem

NODE ARCHITECTURE

The Hebrew University of Jerusalem

			0	<u> </u>	20 20	0 0 20 20 40	<u>) +0 60 00 (</u>	$\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$	40 +0
		Willith@b&sps Intervaluel172407	ip 45 ms	12.2 s 12.2 s	<mark>19</mark> .ტ <u>ვ</u> .0 s 19.ტ <u>ვ</u> .0 s	36.4 s 36.4 s	50.20.2 s	32.9 s 32.9 s	40.đ
	ZIB	The Hebrew University of Jute 1256 n	sms	12.2 s	19.0%0 s	36.5 s	50.49.4 s	33.1 s	40.2
	1024	Intervaloza fatsı	ns	12.2 s	19. 0 %.0 s	36.6 s	50 <mark>.</mark> §Q.5 s	33.6 s	40.4
	1024	Intervalit his	ns	12.3 s	19.1%,1 s	37.2 s	51.∮\$.1 s	35.5	<mark>s</mark> 42.6
) 10	<u>Intertervak</u> -m8m	IS	12.4 s	19 <u>49</u> 2 s	finf ^{38.1} s	52.62.0 s	38.1	s 45
Without Gossip	12.2 s	1h (Intervalations m	IS	12.7 s		40.0 s	54.94.0 s		
Interval = 1024 ms	12.2 s	12h (2ptarvab=m3m	IS L	13.2 s	Avenage	age at no	pdes in		
Interval = 256 ms	12.2 s	19.0 s		t	the orde	r of 2-3 s	with		
Interval = 64 ms	12.2 s	19.0 s		(aossin in	nterval of	256 ms		
Interval = 16 ms	12.3 s	19.1 s			gessipili		200 1110		
Interval = 8 ms	12.4 s	19.2 s							
Interval = 4 ms	12.7 s	19.5 s							
Interval = 2 ms	13.2 s	20.0 s		1024	4 Nodes	2048	Nodes		
MPI-FFT running on BG/Q "JUQUEEN") 10 20	30 40 50	0 10 20	30 40 50	_	
		Without Gossip		8.2 s	40.6 s	4.3 s	36.7 s		
		Interval = 1024 n	ns	8.2 s	40.6 s	4.2 s	36.7 s		
Low overhead:		Interval = 256 ms	5	8.2 s	40.6 s	4.2 s	36.7 s		
		Interval = 64 ms		8.2 s	40.6 s	4.2 s	36.7 s		
No noticeabl	е	Interval = 16 ms		8.2 s	40.6 s	4.3 s	36.8 s		
overhead at	gossip	4 Nodes Interval = 8 ms	204	8.2 s	40.6 s	4 4.4 s	36.9 s	8192 No	des
interval of 64	-256 m	2000000000000000000000000000000000000	20	0.3 S	40.7 8	4.7 s	3028	20 40	00
Without Gossip	20 1 2.2's	$\frac{19.0 \text{ s}}{19.0 \text{ s}} = 1 \text{ ms}$	36.4	868	3 1 1 5 41 1 s	2.9 5.5 5 - 10.0 5		0 s 27.8 s	`
Interval = 1024 ms	12.2 s	19.0 s	36.4			<u>29 s 40.0 s</u>	<u> </u>	<u>2</u> s 28.0 s	\$
Interval = 256 ms	12.2 s	19.0 s	36.5 s	s COSI564	-SPECS+FB	<mark>%41.Qn B40/<u>%</u>3</mark>	JUQUEE	. <mark>7 s</mark> 28.5 s	5
Intervaly, 64 Barak,	A. Shilohş	M. Lie <mark>b2</mark> 9, C. Weinł	1086;68	nd H. Man	t§ig, " <mark>Overl</mark> 3	<mark>356 of</mark> 40.7ec	central <mark>ize2</mark> 6	9.1 s 29.9	S
Intervalp=A6gnsrithr	n on t <mark>h2:3</mark> Re	e <mark>rform</mark> ands of HPC	A3720	<mark>sation</mark> 54.®	®S5 <mark>2014</mark>	35.5 s 42.6 s		31.4 s 35.	.2 s
Interval $= 8 \text{ ms}$	12.4 s	319121mg	38.1	s r54.0	hશુ Sy	38.1 s 45.3	S	38.4 s	42.2 s
Interval = 4 ms	12.7 s	19.5 s	40.0) s 54.	0 s				
Interval - 2 mg	12.2	20.0 s							

GOSSIP VS FAULTS

Number of failed nodes		Circulating <i>local</i> <i>windows</i> of size							
per colony		16	32	64	128	256			
0		11.74	9.67	8.66	8.20	8.07			
	T		11.71	9.72	8.67	8.21	8.07		
	2		11.75	9.68	8.70	8.21	8.08		
	4		11.81	9.73	8.70	8.23	8.11		
	8		11.83	9.79	8.72	8.28	8.17		
	16		11.95	9.90	8.79	8.34	8.20		
	32		12.12	10.05	8.96	8.48	8.36		
Standard deviation		0.49	0.42	0.37	0.36	0.36			
Increase rate		3.2%	3.9%	3.5%	3.4%	3.6%			

Average age at master (1024 nodes per colony)

Gossip is fault tolerant:

Only slight increase in average age when substantial number of nodes fail (up to 32 of 1024 in each colony)

A. Barak, Z. Drezner, E. Levy, M. Lieber, and A. Shiloh, "Resilient gossip algorithms for collecting online management information in exascale clusters", Concurrency and Computation: Practice and Experience, 2015

- Spread load+health info among nodes
- Analytic model ~ simulation ~ emulation
- Negligible overhead (64–256 ms intervals)
- Good quality of information (2–3 s old)
- Fault tolerant (simulated for up to 32 of 1024 nodes failing)

E. Levy, A. Barak, A. Shiloh, M. Lieber, C. Weinhold, and H. Härtig, "Overhead of a Decentralized Gossip Algorithm on the Performance of HPC Applications", ROSS 2014

A. Barak, Z. Drezner, E. Levy, M. Lieber, and A. Shiloh, "Resilient Gossip Algorithms for Collecting Online Management information in Exascale Clusters", Concurrency and Computation: Practice and Experience, 2015

NODE ARCHITECTURE

FFMK: Building an Exascale Operating System

STEP 1: GOSSIP

STEP 2: CORRECTION

- Fault-tolerant broadcast: published^[*]
- Fault-tolerant Reduce + Allreduce,
 collectives with builtin fault-detection
 - Formal analysis, measurements show: log-scalable, sturdy in most cases
- Resiliency for tree-based collectives:
 - Succeed / complete with failing nodes
 - Latency comparable to non-ft algorithms

[*] Torsten Hoefler, Amnon Barak, Amnon Shiloh and Zvi Drezner, "Corrected Gossip Algorithms for Fast Reliable Broadcast on Unreliable Systems", IPDPS'17, Orlando, FL, USA

- Decoupled execution: low noise + latency
- Checkpointing: Coordinated + optimized
- Diffusion: Promising
- Corrected Gossip & Trees: fault-tolerant collective operations (maybe for MPI)
- Integrated: gossip + decision making
- WIP: integrate monitoring + migration

German Priority Programme 1648 Software for Exascale Computing