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Why am I here today?

• Developing HPC tools since 2010
− Score-P (performance: tracing)
− MUST (correctness: MPI runtime error detection)
− Archer (correctness: OpenMP-aware data race detection)
− OTF-CPT (performance: on-the-fly critical path analysis)

• Contributing to OpenMP standard and MPI specification
− OMPT + OMPD
− MPI continuations
− MPI handle debugging interface



Standardization Work
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Standardization work

👍 Interaction with great community

👍 Involves quite some travelling (needs funding)

👍 Great chance for networking

👎 Process of getting a feature into a standard exceeds the duration of a typical PhD
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Tools interfaces in OpenMP (‘14 - ‘18 and ongoing)

• OMPT: 1st person view
• The tool executes as part of the application
• E.g.: Performance / runtime correctness tools

• OMPD: 3rd person view
• The tool executes in a separate process
• E.g.: Debuggers

I need more wing, 
the car slips in 

curve 6.

Breaks getting too 
hot, 5% less pace in 

the next 2 laps
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MPI handle debugging interface

Use case: 

Execution stalls in MPI_Wait(&request, &status);

➢ What kind of request? Where does it come from? → MPI_Irecv in foobar.c:42
➢ Who is the expected sender?

− Which source? How does it translate to a process in the debugger?
➢ What is the tag?
➢ Are there any pending messages from this source? Possibly a tag mismatch?

Segfault in MPI_Recv(buffer, count, vtype, source, 23, MPI_COMM_WORLD, &status);

➢ What memory would be written by this recv considering the type information?



OpenMP + MPI Tools Work
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Motivation: Undefined Behavior: What could go wrong?

• UB allows compilers any behavior

➢ Possible optimization: assume 
absence of UB

➢ Unexpected results

➢ Avoid UB in any case!

Debugging with compiler-based feedback
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

more at: https://git-ce.rwth-aachen.de/hpc-public/sanitizer-tutorial

void contains_null_check(int *P) {

  int dead = *P;

  if (P == 0)

    return;

  *P = 4;

}

clang 17:
contains_null_check(int*):

       test    rdi, rdi            # P == 0

       je      .LBB0_2             # skip 

       mov     dword ptr [rdi], 4  # *P = 4

.LBB0_2:

       ret                         # return

gcc 13:
contains_null_check(int*):

       mov     dword ptr [rdi], 4  # *P = 4

       ret                         # return
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OMPT tool: Archer

• OpenMP-aware data race detection (identifying UB)
• Based on ThreadSanitizer in LLVM / GNU compilers

• Shipped with LLVM since 10.0

• Early adopter tool for new OpenMP / OMPT functionality
− E.g.: detached tasks, free-agent tasks

• Recently implemented features (in context of ECP SOLLVE):
− DR analysis for SIMD instructions (TSan)
− Task-centric analysis (Archer runtime)
− Improved analysis for reductions (OpenMP codegen, TSan)
− Evaluated Archer use with flang

• Intel Inspector is discontinued → Archer now available with icx

Tool configuration FN TN TP FP

LLVM 17 release 36 110 73 2

thread-centric 22 112 87 0

task-centric 14 112 95 0
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Data race detected in NEST Simulator

==================
WARNING: ThreadSanitizer: data race (pid=111865)
  Write of size 1 at 0x7b1000056a70 by main thread:
    #0 Token::datum() const nest-simulator/sli/token.h:362:15
    #1 double getValue<double>(Token const&) nest-simulator/sli/tokenutils.cc:77:53
    #2 bool updateValue<double, double>(lockPTRDatum<Dictionary, &SLIInterpreter::Dictionarytype> const&, Name, double&) nest-simulator/sli/dictutils.h:253:11
    #3 nest::Connection<nest::TargetIdentifierIndex>::set_status(lockPTRDatum<Dictionary, &SLIInterpreter::Dictionarytype> const&, nest::ConnectorModel&) 
nest-simulator/nestkernel/connection.h:364:8
    #4 nest::static_synapse<nest::TargetIdentifierIndex>::set_status(lockPTRDatum<Dictionary, &SLIInterpreter::Dictionarytype> const&, nest::ConnectorModel&) 
nest-simulator/models/static_synapse.h:199:19
  

  Previous write of size 1 at 0x7b1000056a70 by thread T1:
    #0 Token::datum() const nest-simulator/sli/token.h:362:15
    #1 double getValue<double>(Token const&) nest-simulator/sli/tokenutils.cc:77:53
    #2 bool updateValue<double, double>(lockPTRDatum<Dictionary, &SLIInterpreter::Dictionarytype> const&, Name, double&) nest-simulator/sli/dictutils.h:253:11
    #3 nest::Connection<nest::TargetIdentifierIndex>::set_status(lockPTRDatum<Dictionary, &SLIInterpreter::Dictionarytype> const&, nest::ConnectorModel&) 
nest-simulator/nestkernel/connection.h:364:8
    #4 nest::static_synapse<nest::TargetIdentifierIndex>::set_status(lockPTRDatum<Dictionary, &SLIInterpreter::Dictionarytype> const&, nest::ConnectorModel&) 
nest-simulator/models/static_synapse.h:199:19
  

nest-simulator/sli/token.h

359|  Datum* datum() const {

362|    accessed_ = true;

363|    return p;

364|  }

nest-simulator/sli/token.h

162|  mutable bool accessed_;
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MUST

• Runtime correctness analysis for MPI applications

• Correctness’23: Data race analysis for hybrid MPI + OpenMP tasking

• Analysis for hybrid applications is still a construction site
− Making all analyses thread-safe
− Update and integrate hybrid DL-analysis
− For MPI-thread-multiple, DL-analysis

reports false positives

• CI is important, also for tool development
− Running 4500 tests for each commit
− Covering different MPI/compiler setups

more at: https://git-ce.rwth-aachen.de/hpc-public/must-tutorial
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Differential performance analysis of dynamic data race detection

• Among all apps, 351.bwaves, 352.nab, and 
370.mgrid331 show the highest runtime overhead

� Focus further analysis on these 3 apps

• Break down runtime overhead to OpenMP tasks
� Implicit tasks represent the threads within a parallel region

• Implicit task region 10 (shell_lam.fppized.f:231)
− highest runtime overhead
− highest execution time
− significant base execution time

CORRECTNESS@SC’21
Protools@SC’21
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OMPT tools: light-weight OpenMP performance analysis tools

OMPT profiler

• Callstack/flat profiling based on OpenMP regions
• User regions based on omp_control_tool
• Integration of PAPI counters

351.bwaves 
(10)

40x

60
x

Protools@SC’21
Euro-Par’22, EuroMPI’23

Critical path tool

• Tracking critical path at runtime
• Hybrid PMPI + OMPT instrumentation
• Calculates Hybrid Model Factors on-the-fly
• Usecase for EuroMPI’23 paper on properly tracking requests

Total 
memory 

accesses



Performance Model Factors (as used in POP)
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Performance model factors

• Hierarchy of metrics developed at BSC

• Highlight issues in the parallel structure 
of an application

• Parallel Efficiency breaks down into
− Load balance
− Serialization
− Transfer

• Computational Scaling captures impact 
of scaling to node-level performance

Global Scaling

Computational 
Scaling

Parallel Efficiency

Load Balance 
Efficiency

Communication 
Efficiency

Serialization 
Efficiency

Transfer Efficiency

75

90 90

81

6190

55

x

x
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Performance model factors

• Hierarchy of metrics developed at BSC
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− Load balance
− Serialization
− Transfer

• Computational Scaling captures impact 
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Load balance

 

Load Balance
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Serialization efficiency
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Transfer efficiency
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Which metrics to measure?

• Useful time: execution time outside parallel runtimes
− Track execution time on each thread excluding time inside MPI / OpenMP runtimes

• Real runtime: observed execution time
− Track wall clock time from start to end. 

• Ideal runtime: execution time on an ideal machine with 0 communication cost (inf. 
BW / 0 lat)
− Track useful time on critical path 🡪 assumes 0 communication cost
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Scaling

Parallel Efficiency
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Serialization 
Efficiency

Transfer Efficiency
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O-T-F critical path analysis for hybrid model factors

• Forward-only analysis
− we only need the metrics of the critical path, but not the concrete path

• Treat time metrics as Lamport clock and implement the necessary propagation of 
this clock (MPI communication, OpenMP synchronization)

• Relevant metrics: useful computation, time outside the OpenMP runtime
• Relevant critical paths: global, process-local, thread-local
� Formulation of MPI-specific and OpenMP-specific model factors in the paper

Load Imbalance

SerE

SerE

TE TE

TETE

1

6 6

6 9

8 9
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MPI Continuations (MPI-Detach @ EuroMPI’20):
Non-blocking Distributed Block Cholesky Factorization

Truly asynchronous MPI:

Register a callback for 
completion of non-blocking 
communication

→ Release dependencies
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Score-P limitation: Tracing OpenMP + std::thread

Workaround: 

• Score-P in pthread mode
• OMPT tool that marks 

OpenMP regions as 
user-defined regions
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SLDG vs. NuFI – Hybrid Model Factors
SLDG (24^3 x 32^3 DOF) NuFI (64^3 x 64^3 DOF)
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▪ Reasons for low OpenMP Load Balance

1. Imbalanced workload between threads within OpenMP parallel regions OR

2. Sequential code parts that are only executed by the main thread (Amdahl‘s law)

▪  NuFI timestep consists of three parts:

1. Computation of charge density (rho)

2. Solving Poisson equation

3. Interpolation

NuFI – OpenMP Load Balance Callpath profile of NuFI‘s 
interpolation (metric: time)

Runtime of NuFI‘s interpolation 
function on rank 0

(all MPI ranks show a similiar pattern)
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reference optimized

1. Parallelization of transposed matrix-vector product using OpenMP for-worksharing construct

2. Replacing custom euclidean vector norm function lsmr::norm() with nrm2() from BLAS

3. Linking NuFI with threaded version of Intel MKL (for multi-threaded BLAS)

NuFI – Parallelization of sequential code
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Nest-Simulator: Trace of 12 threads x 128 procs
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Exploring MPI/OpenMP scalability of a hybrid application



Comparing results from multiple tools
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Apple-to-apple comparison

• Running both tools at the same time is crucial for meaningful results

• PnMPI: stack MPI interceptors of different tools

• OMPT-multiplex: chain OMPT tools
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Stacking OMPT tools: ompt-multiplex.h

• Shipped with LLVM:
− openmp/tools/multiplex/ompt-multiplex.h

• Tool defines a name for 
CLIENT_TOOL_LIBRARIES_VAR e.g.: 
"SCOREP_TOOL_LIBRARIES" and includes the header

• First tool is loaded with OMP_TOOL_LIBRARIES 
variable, second tool is loaded with 
SCOREP_TOOL_LIBRARIES

• Tool can optimize the allocation of data structures 
(default: multiplex allocates pair for each tool data)

Application

OpenMP

multiplex.h

ompt_callback_parallel_begin(data)

OpenMP parallel

Client Tool

ompt_callback_parallel_begin(data->ptr->second)Tool (Multiplex)

ompt_callback_parallel_begin(data->ptr->first)

Workshop on Parallel 
Tools for HPC 2019
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Comparing results from OTF-CPT and Score-P/Cube
----------------POP metrics----------------

Parallel Efficiency:                0.757081

  Load Balance:                     0.931473

  Communication Efficiency:         0.812778

    Serialisation Efficiency:       0.885207

    Transfer Efficiency:            0.918179

  MPI Parallel Efficiency:          0.779985

    MPI Load Balance:               0.956048

    MPI Communication Efficiency:   0.815843

      MPI Serialisation Efficiency: 0.885975

      MPI Transfer Efficiency:      0.920842

  OMP Parallel Efficiency:          0.970635

    OMP Load Balance:               0.974295

    OMP Communication Efficiency:   0.996243

      OMP Serialisation Efficiency: 0.999133

      OMP Transfer Efficiency:      0.997108


