
Tool support for
HPC performance optimization and productivity services
Dr. Joachim Jenke (jenke@itc.rwth-aachen.de)

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

2

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Why am I here today?

• Developing HPC tools since 2010
− Score-P (performance: tracing)
− MUST (correctness: MPI runtime error detection)
− Archer (correctness: OpenMP-aware data race detection)
− OTF-CPT (performance: on-the-fly critical path analysis)

• Contributing to OpenMP standard and MPI specification
− OMPT + OMPD
− MPI continuations
− MPI handle debugging interface

Standardization Work

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

4

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Standardization work

👍 Interaction with great community

👍 Involves quite some travelling (needs funding)

👍 Great chance for networking

👎 Process of getting a feature into a standard exceeds the duration of a typical PhD

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

5

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Tools interfaces in OpenMP (‘14 - ‘18 and ongoing)

• OMPT: 1st person view
• The tool executes as part of the application
• E.g.: Performance / runtime correctness tools

• OMPD: 3rd person view
• The tool executes in a separate process
• E.g.: Debuggers

I need more wing,
the car slips in

curve 6.

Breaks getting too
hot, 5% less pace in

the next 2 laps

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

6

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

MPI handle debugging interface

Use case:

Execution stalls in MPI_Wait(&request, &status);

➢ What kind of request? Where does it come from? → MPI_Irecv in foobar.c:42
➢ Who is the expected sender?

− Which source? How does it translate to a process in the debugger?
➢ What is the tag?
➢ Are there any pending messages from this source? Possibly a tag mismatch?

Segfault in MPI_Recv(buffer, count, vtype, source, 23, MPI_COMM_WORLD, &status);

➢ What memory would be written by this recv considering the type information?

OpenMP + MPI Tools Work

8

Motivation: Undefined Behavior: What could go wrong?

• UB allows compilers any behavior

➢ Possible optimization: assume
absence of UB

➢ Unexpected results

➢ Avoid UB in any case!

Debugging with compiler-based feedback
Debugging, Testing and Correctness Workshop Series 2023
Joachim Jenke

more at: https://git-ce.rwth-aachen.de/hpc-public/sanitizer-tutorial

void contains_null_check(int *P) {

 int dead = *P;

 if (P == 0)

 return;

 *P = 4;

}

clang 17:
contains_null_check(int*):

 test rdi, rdi # P == 0

 je .LBB0_2 # skip

 mov dword ptr [rdi], 4 # *P = 4

.LBB0_2:

 ret # return

gcc 13:
contains_null_check(int*):

 mov dword ptr [rdi], 4 # *P = 4

 ret # return

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

9

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

OMPT tool: Archer

• OpenMP-aware data race detection (identifying UB)
• Based on ThreadSanitizer in LLVM / GNU compilers

• Shipped with LLVM since 10.0

• Early adopter tool for new OpenMP / OMPT functionality
− E.g.: detached tasks, free-agent tasks

• Recently implemented features (in context of ECP SOLLVE):
− DR analysis for SIMD instructions (TSan)
− Task-centric analysis (Archer runtime)
− Improved analysis for reductions (OpenMP codegen, TSan)
− Evaluated Archer use with flang

• Intel Inspector is discontinued → Archer now available with icx

Tool configuration FN TN TP FP

LLVM 17 release 36 110 73 2

thread-centric 22 112 87 0

task-centric 14 112 95 0

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

10

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Data race detected in NEST Simulator

==================
WARNING: ThreadSanitizer: data race (pid=111865)
 Write of size 1 at 0x7b1000056a70 by main thread:
 #0 Token::datum() const nest-simulator/sli/token.h:362:15
 #1 double getValue<double>(Token const&) nest-simulator/sli/tokenutils.cc:77:53
 #2 bool updateValue<double, double>(lockPTRDatum<Dictionary, &SLIInterpreter::Dictionarytype> const&, Name, double&) nest-simulator/sli/dictutils.h:253:11
 #3 nest::Connection<nest::TargetIdentifierIndex>::set_status(lockPTRDatum<Dictionary, &SLIInterpreter::Dictionarytype> const&, nest::ConnectorModel&)
nest-simulator/nestkernel/connection.h:364:8
 #4 nest::static_synapse<nest::TargetIdentifierIndex>::set_status(lockPTRDatum<Dictionary, &SLIInterpreter::Dictionarytype> const&, nest::ConnectorModel&)
nest-simulator/models/static_synapse.h:199:19

 Previous write of size 1 at 0x7b1000056a70 by thread T1:
 #0 Token::datum() const nest-simulator/sli/token.h:362:15
 #1 double getValue<double>(Token const&) nest-simulator/sli/tokenutils.cc:77:53
 #2 bool updateValue<double, double>(lockPTRDatum<Dictionary, &SLIInterpreter::Dictionarytype> const&, Name, double&) nest-simulator/sli/dictutils.h:253:11
 #3 nest::Connection<nest::TargetIdentifierIndex>::set_status(lockPTRDatum<Dictionary, &SLIInterpreter::Dictionarytype> const&, nest::ConnectorModel&)
nest-simulator/nestkernel/connection.h:364:8
 #4 nest::static_synapse<nest::TargetIdentifierIndex>::set_status(lockPTRDatum<Dictionary, &SLIInterpreter::Dictionarytype> const&, nest::ConnectorModel&)
nest-simulator/models/static_synapse.h:199:19

nest-simulator/sli/token.h

359| Datum* datum() const {

362| accessed_ = true;

363| return p;

364| }

nest-simulator/sli/token.h

162| mutable bool accessed_;

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

11

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

MUST

• Runtime correctness analysis for MPI applications

• Correctness’23: Data race analysis for hybrid MPI + OpenMP tasking

• Analysis for hybrid applications is still a construction site
− Making all analyses thread-safe
− Update and integrate hybrid DL-analysis
− For MPI-thread-multiple, DL-analysis

reports false positives

• CI is important, also for tool development
− Running 4500 tests for each commit
− Covering different MPI/compiler setups

more at: https://git-ce.rwth-aachen.de/hpc-public/must-tutorial

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

12

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Differential performance analysis of dynamic data race detection

• Among all apps, 351.bwaves, 352.nab, and
370.mgrid331 show the highest runtime overhead

� Focus further analysis on these 3 apps

• Break down runtime overhead to OpenMP tasks
� Implicit tasks represent the threads within a parallel region

• Implicit task region 10 (shell_lam.fppized.f:231)
− highest runtime overhead
− highest execution time
− significant base execution time

CORRECTNESS@SC’21
Protools@SC’21

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

13

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

OMPT tools: light-weight OpenMP performance analysis tools

OMPT profiler

• Callstack/flat profiling based on OpenMP regions
• User regions based on omp_control_tool
• Integration of PAPI counters

351.bwaves
(10)

40x

60
x

Protools@SC’21
Euro-Par’22, EuroMPI’23

Critical path tool

• Tracking critical path at runtime
• Hybrid PMPI + OMPT instrumentation
• Calculates Hybrid Model Factors on-the-fly
• Usecase for EuroMPI’23 paper on properly tracking requests

Total
memory

accesses

Performance Model Factors (as used in POP)

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

15

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Performance model factors

• Hierarchy of metrics developed at BSC

• Highlight issues in the parallel structure
of an application

• Parallel Efficiency breaks down into
− Load balance
− Serialization
− Transfer

• Computational Scaling captures impact
of scaling to node-level performance

Global Scaling

Computational
Scaling

Parallel Efficiency

Load Balance
Efficiency

Communication
Efficiency

Serialization
Efficiency

Transfer Efficiency

75

90 90

81

6190

55

x

x

x

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

16

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Performance model factors

• Hierarchy of metrics developed at BSC

• Highlight issues in the parallel structure
of an application

• Parallel Efficiency breaks down into
− Load balance
− Serialization
− Transfer

• Computational Scaling captures impact
of scaling to node-level performance

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

17

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Load balance

Load Balance

Global Scaling

Computational
Scaling

Parallel Efficiency

Load Balance
Efficiency

Communication
Efficiency

Serialization
Efficiency Transfer Efficiency

75

90 90

81

6190

55

x

x

x

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

18

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Serialization efficiency

Load Balance SerE

SerE

Global Scaling

Computational
Scaling

Parallel Efficiency

Load Balance
Efficiency

Communication
Efficiency

Serialization
Efficiency Transfer Efficiency

75

90 90

81

6190

55

x

x

x

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

19

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Transfer efficiency

Load Balance

SerE

SerE

TE TE

TETE

Global Scaling

Computational
Scaling

Parallel Efficiency

Load Balance
Efficiency

Communication
Efficiency

Serialization
Efficiency Transfer Efficiency

75

90 90

81

6190

55

x

x

x

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

20

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Which metrics to measure?

• Useful time: execution time outside parallel runtimes
− Track execution time on each thread excluding time inside MPI / OpenMP runtimes

• Real runtime: observed execution time
− Track wall clock time from start to end.

• Ideal runtime: execution time on an ideal machine with 0 communication cost (inf.
BW / 0 lat)
− Track useful time on critical path 🡪 assumes 0 communication cost

Global Scaling

Computational
Scaling

Parallel Efficiency

Load Balance
Efficiency

Communication
Efficiency

Serialization
Efficiency

Transfer Efficiency

75

90 90

81

6190

55

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

21

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

O-T-F critical path analysis for hybrid model factors

• Forward-only analysis
− we only need the metrics of the critical path, but not the concrete path

• Treat time metrics as Lamport clock and implement the necessary propagation of
this clock (MPI communication, OpenMP synchronization)

• Relevant metrics: useful computation, time outside the OpenMP runtime
• Relevant critical paths: global, process-local, thread-local
� Formulation of MPI-specific and OpenMP-specific model factors in the paper

Load Imbalance

SerE

SerE

TE TE

TETE

1

6 6

6 9

8 9

9

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

22

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

MPI Continuations (MPI-Detach @ EuroMPI’20):
Non-blocking Distributed Block Cholesky Factorization

Truly asynchronous MPI:

Register a callback for
completion of non-blocking
communication

→ Release dependencies

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

23

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Score-P limitation: Tracing OpenMP + std::thread

Workaround:

• Score-P in pthread mode
• OMPT tool that marks

OpenMP regions as
user-defined regions

NHR4CES – Paul Wilhelm, Fabian Orland, Assessing the performance of solvers for kinetic plasma
dynamics in a six-dimensional phase space, Community Workshop, June 13, 2024

24

SLDG vs. NuFI – Hybrid Model Factors
SLDG (24^3 x 32^3 DOF) NuFI (64^3 x 64^3 DOF)

NHR4CES – Paul Wilhelm, Fabian Orland, Assessing the performance of solvers for kinetic plasma
dynamics in a six-dimensional phase space, Community Workshop, June 13, 2024

25

▪ Reasons for low OpenMP Load Balance

1. Imbalanced workload between threads within OpenMP parallel regions OR

2. Sequential code parts that are only executed by the main thread (Amdahl‘s law)

▪ NuFI timestep consists of three parts:

1. Computation of charge density (rho)

2. Solving Poisson equation

3. Interpolation

NuFI – OpenMP Load Balance Callpath profile of NuFI‘s
interpolation (metric: time)

Runtime of NuFI‘s interpolation
function on rank 0

(all MPI ranks show a similiar pattern)

NHR4CES – Paul Wilhelm, Fabian Orland, Assessing the performance of solvers for kinetic plasma
dynamics in a six-dimensional phase space, Community Workshop, June 13, 2024

26

reference optimized

1. Parallelization of transposed matrix-vector product using OpenMP for-worksharing construct

2. Replacing custom euclidean vector norm function lsmr::norm() with nrm2() from BLAS

3. Linking NuFI with threaded version of Intel MKL (for multi-threaded BLAS)

NuFI – Parallelization of sequential code

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

27

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Nest-Simulator: Trace of 12 threads x 128 procs

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

28

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Exploring MPI/OpenMP scalability of a hybrid application

Comparing results from multiple tools

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

30

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Apple-to-apple comparison

• Running both tools at the same time is crucial for meaningful results

• PnMPI: stack MPI interceptors of different tools

• OMPT-multiplex: chain OMPT tools

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

31

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Stacking OMPT tools: ompt-multiplex.h

• Shipped with LLVM:
− openmp/tools/multiplex/ompt-multiplex.h

• Tool defines a name for
CLIENT_TOOL_LIBRARIES_VAR e.g.:
"SCOREP_TOOL_LIBRARIES" and includes the header

• First tool is loaded with OMP_TOOL_LIBRARIES
variable, second tool is loaded with
SCOREP_TOOL_LIBRARIES

• Tool can optimize the allocation of data structures
(default: multiplex allocates pair for each tool data)

Application

OpenMP

multiplex.h

ompt_callback_parallel_begin(data)

OpenMP parallel

Client Tool

ompt_callback_parallel_begin(data->ptr->second)Tool (Multiplex)

ompt_callback_parallel_begin(data->ptr->first)

Workshop on Parallel
Tools for HPC 2019

Dynamic Analysis Tools for HPC
ZIH Kolloquium
Joachim Jenke

32

Performance Optimisation
and Productivity

A Centre of Excellence in HPC

Comparing results from OTF-CPT and Score-P/Cube
----------------POP metrics----------------

Parallel Efficiency: 0.757081

 Load Balance: 0.931473

 Communication Efficiency: 0.812778

 Serialisation Efficiency: 0.885207

 Transfer Efficiency: 0.918179

 MPI Parallel Efficiency: 0.779985

 MPI Load Balance: 0.956048

 MPI Communication Efficiency: 0.815843

 MPI Serialisation Efficiency: 0.885975

 MPI Transfer Efficiency: 0.920842

 OMP Parallel Efficiency: 0.970635

 OMP Load Balance: 0.974295

 OMP Communication Efficiency: 0.996243

 OMP Serialisation Efficiency: 0.999133

 OMP Transfer Efficiency: 0.997108

