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Current Trend in Computer Architecture: Al Hardware

The golden age of computer architecture is here

HPC HPC Guru
burw - @HPC Guru

Countdown to #/SC24: GKL
“#Al industry now leads in scale, budget, & pace of deployment -

significant innovation is being led by startups & hyperscalers rather than
professors & public servants

| don't think the #HPC community really grasps how quickly this shift
happened”
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So why should | care?
(J.L.in 2017)




Graph Algorithms Are Hard to Scale
(and not very efficient)
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Carl Yang, Aydin Bulug, John D. Owens: GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU



Graph Algorithms Are Hard to Scale
(and not very efficient)

100000

« Validated by Experiment Largest problem on DGX-2  Largest problem on DGX-2

16x 32GB V100 GPU 16x 32GB V100 GPU
o Projected (realistic scaling: 5.3x) (ideal scaling: 16X)  1op CPU Graph500 entry
10000 . 82944 nodes
Ideal Scaling to 16 GPUs K Computer
g R S ] Maybe CPU/GPU is not the ideal
[ 1000 _ = op GPU Graph500 entry
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o machine for graph problems...
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FLOPs, which we don’t need

« GPU has memory bandwidth, but
. . N . . . at the cost of high latency

Problem Scale

GraphBLAST
1x 16GB Tesla V GPU
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Time to look at different architectures!

Carl Yang, Aydin Bulug, John D. Owens: GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU



The Graphcore GC200 Intelligence Processing Unit

1472 cores per chip
* 6 Threads per core

* 6 cycles latency
e 624 KB SRAM/core

Relevant IPU features:
e Matrix units for Al acceleration Booring
e MIMD rather than SIMD Better than GPUs




The Graphcore GC200 Intelligence Processing Unit

e 1472 cores per chip
* 6 Threads per core

* 6 cycles latency
e 624 KB SRAM/core

Relevant IPU features:

e Matrix units for Al acceleration Booring

e MIMD rather than SIMD Better than GPUs

e High on-chip memory bandwidth Important

e Low memory latency Yes please! (J.L.in 2018/19)
e Has very slow DRAM This will be a problem



The

Stor
yWw

e are Looki

ing Fo

r

»

®0d
) =
“' ( ) =
D ®

0.




The Story We are Looking For
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“Let’s just give it a try”
(J.L. in 2020)




The GC200 IPU: Shared and Distributed Memory on a Chip
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* 624 KB SRAM plus core form a tile

6 Threads per core
1472 tiles per chip
* Need to exploit very wide parallelism
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Dataflow-Based Programming Abstraction

compute
vertices

o\,

tensor

vertices /

t1

t3

t5

t4

\

e Datais arranged in immutable tensors

 Code is organized in codelets (compute vertices)

e Bipartite graph of data dependency

* Independent compute vertices are scheduled concurrently




Bulk-Synchronous Parallel (BSP) Communication on the IPU

Processor
compute )
vertices
ol - Compute
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 Data exchange between concurrent phases
e Communication planned at compile time
 No communication/computation overlap
 No need for buffers




The GC200 IPU has 1472 individual cores and 8832 threads -
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e 1472 cores per chip
* 6 Threads per core

* 6 cycles latency
e 624 KB SRAM/core
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Unrestricted point-to-point communication between tiles




More complex communication patterns with broadcasts
are possible

* Pertile BW:~5GB/s

* Aggregate BW: ~ 8TB/s

 No overlap

* Preplanned
communication, messy
to get around that.
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Irregular Communication on the IPU

* Poplar framework offers PGAS-style data exchange
PGAS = Partitioned Global Address Space
(programmer sees shared memory, system handles data exchange)

« Communication can be optimized by controlling data placement

e Communication codes exist at compile time, but we can choose
between calling different codes at runtime

oo
1

Reduction in irreiular comﬁutation



The IPU is a Barrel Processor

(a.k.a. hyperthreading) * 6 threads per core
* 2/4/8 threads per core « Scheduling order fixed

e Scheduling order variable
* Allows latency hiding

* Individual thread does not experience latency but...

* To use all retirement slots, we need to keep all threads busy
 Easiest to do if all 6 threads work on independent subproblems, but...
 There is usually too little memory for that



Individual IPU Code Optimization is Easy

ee .LBB2_2: # =>This Inner Loop

bool compute() { Header: Depth=1

auto size = endPos - startPos; 1d32 $a1, $m5, $m15, $m7
for (int j = 0; j < size; j++) { {
float A[j * RNZ + 0] VII[j H
Float AL3 * RNZ + 1] * VII[] i 1d32 Sa2, Sm6, Sm15, Sm4
float A[j * RNZ + 2] * V[I[] ; f32mul Sa1, $a2, $Sa1
float A[j * RNZ + 3] * V[I[]j 8 }

o nn

VII[] ; {

VII[j ; 1d32  $a3, S$m5, Sm15, Sm4
VII[] ; f32add $a@, Sa0, Sai

VII[j : }

A[j * RNZ + 8] * V[I[] * ; . . . # More of this stuff

Alj * RNZ + 9] * V[I[j * : {

A[j * RNZ + 10] * V[I[j * .

Alj RNZ 111 * V[I[j * . add $m7, Sm4, 16
f32mul $al, $a2, $a3

Alj * RNZ + 4]
Alj * RNZ + 5]
A[j * RNZ + 6]
Alj * RNZ + 7]

*
*
*
*

o nnu

a = A[j * RNZ + 12] * V[I[j * }
b = A[j * RNZ + 13] * V[I[j *
Pobll e e f32add $a@, $a@, Sal
SR B D B e st32 $a@, Sm@, Sm15, Sm4
}neWV[]] =D[]] *V[]] +a+b+c SOf‘t4X16lO $m4, $m7l $m15
| cmpslt Sm7, Sm4, Sm1
}return ; brnz Sm7, .LBB2_2

Computation optimization is straightforward:
minimize number of instructions



The Hello World of Graph Algorithms: BFS

Let Q be the frontier  Start
Let Q' be the next

frontier
Let G(V,E) be the
Graph L1
Let B be visited nodes
L2
L3

* Basic measure of graph processing performance
* Single O(n+m) execution, no time for expensive partitioning etc...
 Need 2D block partitioning for power-law graphs



Mapping to the IPU
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Single Device BFS — IPU vs GPU vs CPU
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e GC2 IPU (1st generation) beats V100 GPU by about 2x
e CG200vs A100 is very comparable
* Very good performance/watt



IPU vs CPU
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* Needs a lot of parallelism
 GPU is the real competitor



Why not more GTEPS?
Processor
i )
- Compute
0p)
— S
; Exchange S
)
O L
Global
Sync /

Global synchronization

No automatic load balancing at
all. Full imbalance penalty (as
normal for 1472x distributed
memory)

Dynamic load balancing makes
little sense for BFS

Far better results on dense
graphs

Cannot beat CPU on high-
diameter graphs (little
parallelism)

Still needs fewer active threads
than GPU:

8.8K'vs 6.6K - 212.9K
23




Scaling Out: Multi-IPU BFS

' I IPU-M2000 I '

GC200 IPU
3c

e Computation can scale to multiple IPUs

NIC/SmartNIC

e BFS is extremely communication-heavy

e large-scale problems are mostly network dependent

IPU-POD64

x16 IPU-Link 64GB/s
100Gbps Host-Link
100Gbps GW-Link
x8 PCle G4 32GB/s




Using multiple IPUs, we are using the same mapping
techniques as with the single device




Using multiple IPUs, we are using the same mapping
techniques as with the single device




Multiple Device BFS - IPU vs GPU
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mm 1 GPU, Gunrock DOBFS I 2 GPUs, Gunrock DOBFS 14 GPUs, Gunrock DOBFS 18 GPUs, Gunrock DOBFS
mm 1 GPU, Gunrock Topdown 12 GPUs, Gunrock Topdown 14 GPUs, Gunrock Topdown 18 GPUs, Gunrock Topdown
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Multiple Device BFS - IPU vs GPU

mm 1 IPU, iPUG @ 2 IPUs, iPUG 14 IPUs, iPUG 18 IPUs, iPUG
mm 1 GPU, Gunrock DOBFS I 2 GPUs, Gunrock DOBFS 4 GPUs, Gunrock DOBFS 18 GPUs, Gunrock DOBFS
mm 1 GPU, Gunrock Topdown 12 GPUs, Gunrock Topdown 14 GPUs, Gunrock Topdown 18 GPUs, Gunrock Topdown
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Monodomain simulation in cardiac electrophysiology using
Lynx

E,x

Tetrahedral mesh for finite volume simulation
ODE reaction model (ten Tusher)
PDE diffusion model (SpMV)

Large number of identical time steps

Allows for lots of optimization techniques including load balancing and partitioning




Repeated SpMV: Minimize Communication via Partitioning
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2x GC200 IPU V100 GPU V100 GPU
FP32 FP32 FP64

0.21 1.208 1.836
ODE 2.52 2.056 2.822
Sum 2.75 3.264 4.658
PDE multistep 128:1 294 156.68 239.666

GPU has more FLOPS for ODE (code does not use IPU matrix units)
FP32 is a severe limitation for scientific computing
PDE (SpMV) is much faster on IPU. Dominates multisteping.




We are increasingly spending more time on exchanges with
tiles receiving values for up to 80% of their cells

PDE Comp Total [l PDE Ex Total [ ODE Total PDE Comp Total [l PDE Ex Total [ ODE Total
100% 5.00E+6

4.00E+6
75%
3.00E+6
50%
2.00E+6

25%
1.00E+6

0% 0.00E+0




Currently, the IPU is compute bound;
the ODE step is much slower than on the A100
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IPU Partitioning Problem

Small scale distributed memory creates special partitioning problem:
Minimize cutsize (as usual)

Create large number of parts (1472) efficiently

Balance total part size (vertices plus ghost cells)

Partition hierarchically for multi-IPU

Optimize mapping along 1D ladder topology (hard)

Lk wh e

Large benefit from load balanced and communication optimized data distribution
Very fast for e.g. Page-Rank
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Sequence Alignment

Reference (R)

Reference (R)

<] [o[T/TITITIY] EZ=&
- VI oL || n_blm
o| [ [T &5
<| [l [FI¥] $—2
= ole|d| || ©—C
O| (I || -
O ||| || m__
o| [Heleo|/ || § &
2 8
<
QIC<(O<€|0|0|=|<
(O) A1dn)
(ool | (O < <
= =
~o|l—|[—|o|N|nn|n (v Q9
o Gl &S
Qlo(aN|—|—|n|O|n|< |0 ~ <€
Q O
dlo|lo|la|—~|[g|on|a|< |~ O <
SR
T00022l254-
Qlo|—|—|n|a|—~|en|en|N m
Qlo|a|—~|olo|a|gt|n|a o A
o O
Qlo|la|l—|o|lo|a|a|~|o i
T
=i f=] =l =] E=1 E=] E=AE=AE= cmw
O|«|0|«|Q|0 ||« & O
(0) AdnQ



Smith Waterman Algorithm

1 (IPU) iPuma Host mm (IPU) iPuma Device m= (CPU) SSW
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e MIMD IPU better at dealing with irregularity than SIMD GPU
e Host connection becomes a bottleneck



Other Applications

e SpMV: about 200 GFLOP/s

e Coloring (backtracking) with dynamic load balancing: 2x faster than CPU

e X-Drop sequence alignment: 4-10x vs A100

e BERT ~ 4x faster inference than A100 (4x slower on train)

e Hungarian algorithm (Matching): 4-10x vs A100




Conclusions

e GC 200 IPU often allows 2-10x speedups over A100
o Both devices are very comparable (7nm, about 60 billion transistors)
e |PU implementations only work for specific sizes (small problems)

e Need lots of IPUs for larger problems

e First IPU implementations compete with very mature GPU codes




And now for the bad News

* Bow IPU from 2022 is just upclocked GC200
* Not clear what the future of the IPU is like — this is a problem




And now for the bad News

* Bow IPU from 2022 is just upclocked GC200
* Softbank recently bought Graphcore — are we getting new IPUs?




And now for the bad News

* Bow IPU from 2022 is just upclocked GC200
* Softbank recently bought Graphcore — are we getting new IPUs?
* However: there are many competitors with similar chips

* Next step: apply lessons learned to other tile-centric devices

* Goal: develop a theory of tile-centric graph algorithms



Potential for Processing Large Graphs: Cerebras
WSE-2 Wafer Scale Engine

Similar design to IPU

Tiles with compute & SRAM memory
850 % 1000 cores/tiles
Roughly equivalent to 64 CPU/GPU/IPU

Fast communication among neighboring processors (2D mesh)

vV 6 © o e e

Miniature distributed memory no longer works here.
Need to embed problem into 2D space.



BFS on the Cerebras WSE-2 Wafer Scale Engine

Working prototype
Still based on 2D adjacency matrix decomposition
Neighbor too neighbor communication causes imbalance

Exploit rectangular shape of WSE to add functional units (filters)

Use additional tiles to increase available memory along diagonal

SETEIV




Fair Comparisons Between Different Processors are Not Easy

MLPerf efficiency metrics

4 Metric Google Nvidia Nvidia Cerebras GraphCore GraphCore
I TPU V3 V100 A100 WSE IPUL PU2
1 Technology node >120m | oMc120m | TSMC7nm (TSMC16nm| TSMC16nm | TSMC7 nm
(16 nm est.)

2 Die Area (mm2) <648 (600 est.) 815 826 46225 900 (est.) 823

3 Transistor Count (B) 11 (est.) 21 54.2 1200 23.6 59.4

4 Architecture Systolic Array | SIMD + TC SIMD + TC MIMD MIMD MIMD
B Theoretical TFLOPS (16-bit mixed 123 125 312 2500 125 250
£ precision)
g 6 Freq (GHZ) 0.92 155 1.4 Unknown 1.6 Unknown
s 7 DRAM Capacity (GB) 32 32 80 N/A N/A 112
e 8 DRAM BW (GB/sec) 900 900 2039 N/A N/A 64 (est.)

36 VB 87 MB
9 Total SRAM Capacity 32MB (RF+114+12) | (RF+L1+12) 18GB 300 MB 900 MB
224 @RF + 608 @RF+
10 SRAM BW (TB/sec) Unknown 14 @L1 + 19 @L1 + 9000 45 47.5
3 @L2 7 @12
98% 88% 93% 47% 61%
nergy ency (Achievable
13 GEMM TFLOPS/Max Watts) 0.26 0.24 0.72 Unknown 0.39 1.0
Theoretical Energy Efficiency

14 eoretical TELOPS/Max Watts 0.27 0.27 0.78 0.125 0.83 1.6
I Memory Efficiency
g 16 (FLOP/DRAMByte) 133 122 158 N/A N/A Unknown
& Memory Efficiency

Area Efficiency
(Achievable TFLOPS/mm2) Unknown
Area Efficiency Unkrowin

Tim Rogers and Mahmoud Khairy, An Academic’s Attempt to Clear the Fog of the Machine Learning Accelerator War, ACM SIGARCH blog



Next Step: Towards a Theory of Tile Centric Computing
CPU
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Traditional CPU: SRAM Computation Spreads over Time
CPU




ML Accelerators: SRAM Computation Spreads over Cores
IPU

CPU
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One Ideal Case: Data Streaming

Best case: small persistent
streamable data, lots of
operations on data

e Sequence alignment has

AAAAA, this structure
Cc CCCC¢cCcocc

Not the case for most
graph/ matrix algorithms

* Typical example: NN with
weights and training data




Ideal Case: Use lots of SRAM-based processors to exploit
superlinear scaling

Needs enough processors/SRAM to fit
entire graph

Needs enough prarallelism to run on lots
of tiles (or use non-tile based

architecture)

Needs fast and ideally flexible network Cardiac simulation on
Oakbridge-CX (Cascade lake)

Q Speedups for 64x nodes:
* PDE (SpMV) 128x

O}
=

4 8 16 32 64 128 256
MPI 8x
#nodes

—Total —PDE ——ODE —MPI * Total 43x




Ideal Case: Use lots of SRAM-based processors to exploit
superlinear scaling

* Should work well for high time, low space
complexity algotithms (e.g. exact
weighted matching)

 Unfortunately many such algorithms are
not parallel

* Brute force approaches work, but this
may not help time to solution

* Kernelizations are VERY attractive




Application of the Idea: LLM Inference with Grog

Groq TSP is another SRAM-based

processor

Uses 572 TSPs to store entire LLM

in SRAM

Low latency

Fastest system for LLM inference
(Llama-3)

Streaming architecture, not ideal
for most graph algorithms

Tensor Streaming Processor at a Glance

Groq TSP™, Scalable Architecture

220MB SRAM
Massive concurrency
80 T8/s of stream bandwidth on-chip

480GBps Chip-2-Chip links
Extensible scaling
Multiple topologies

Dense MatMul
320 x 320 Fused Dot Product
INT8, FP16 w/32b accum
4 x 102,400 “weights”

Dataflow
Shift, permute, rotate,
transpose on the fly

Matrix Multiply Unit

Vector Units
Element-wise tensor ops
Linear, non-linear
INT8/16/32, FP16/32
16 PEs per lane 5,120 total

Matrix Multiply Unit

Instruction Control
144 instruction queues for
instruction parallelism

Instruction Control Unit

PCle 10

oreq




Basic Model of Computation: RAM Machine

RAM Machine:

Indirect addressing
/ pointers

Program w/
Boolean &
Arithmetic
instructions

L~

N

Local registers
hold O(logt) bit
numbers

—
Arithmetic
operations
at unit cost

O() notation does not
reflect varying cost of
memory accesses.

Load/Store at
Unit cost

Unit cost is a simplification
Cost must be O(n?/3)

Note that Turing machines do not make this simplification.

Boaz Barak: Introduction to Theoretical Computer Science




Data Movement Cost depends on Data Size

Approximate timing for various operations on a typical PC:

execute typical instruction 1/1,000,000,000 sec = 1 nanosec
fetch from L1 cache memory 0.5 nanosec
branch misprediction 5 nanosec
fetch from L2 cache memory 7 nanosec
Mutex lock/unlock 25 nanosec
fetch from main memory 100 nanosec
send 2K bytes over 1Gbps network 20,000 nanosec
read 1MB sequentially from memory 250,000 nanosec
fetch from new disk location (seek) 8,000,000 nanosec
read 1MB sequentially from disk 20,000,000 nanosec
send packet US to Europe and back |[150 milliseconds = 150,000,000 nanosec

» All efficient memory technologies lie on a pareto curve of the

ratio between bandwith/latency and size/cost
 Technologies not on the curve are not efficient
 Thisisalaw



Logarithmic Capacity/Speed Tradeoff -,
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e Capacity e=Bandwidth

Space efficient algorithms are inherently faster (if you can select optimal hardware)




Graphcore GC 200 IPU Cerebras WSE-2
® Great SpMV ® Great SpMV

e Slow ODE ® Pretty good ODE

® Good intra-device comm ® Intra-device comm a challenge

® Inter-device a challenge ® Inter-device not better

® MPIl-inspired strategy works e Needs completely new algorithms



Tiles are coming, One Way or Another

With 135 million transistors, you can get a lot of cache...
But the internal structure becomes more and more tile based

A

Ampere Custom Cloud Native Core AMPERE.
* 192 Single-Threaded Ampere Custom Cores
% aclie OO00O00000000010010
- 64 KB 4-way L1-D O I I e
C IO OO I I I I I I O I
« 16 KB 4-way L1-I per Core -----.....-.-.-.
« 2 MB 8-way L2 per Core IEEEEEaEss
EEEEERERRENENNENNRNRENRNNNNIA. LI L I I L
* Power and Area Efficient IPC Gains LI IO Single-Threaded
IEEeEes
AM D 9684)( CPU h * Improved Branch Misprediction Recovery : : :1. T Ampere Custom Cores
as * Advanced Memory Disambiguation L .i- aEss
aEEEnnns 64 KB 16 KB
1. 1 G B Of L3 CaChe’ * Highly Accurate L1 Data Prefetcher aEEEEans Lt Li-instruction
but a |Ot Of N U MA 2MB Private L2 Cache

effects on chip




The Tile-based Graph Accelerator

What we would like...

Large SRAM

Some FLOPs

No matrix or vector units
Fine grained communication
No global synchronization
Nonlocal topology

® And a high-level description
of algorithms....




