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Current Trend in Computer Architecture: AI Hardware
The golden age of computer architecture is here 

AI



But We Like…
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So why should I care?
(J.L. in 2017)



Graph Algorithms Are Hard to Scale
(and not very efficient)
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Fig. 14. Data points from GraphBLAST and points representative of the state-of-the-art in distributed BFS.
The Dashed line indicates projected performance assuming ideal scaling and realistic scaling accounting
for bisection bandwidth for 16 GPUs. In random graph generation for each problem scale SCALE, the graph
will have 2SCALE vertices and 16 × 2SCALE edges according to Graph500 rules. We acknowledge that the
R-MAT generator used by Graph500 has known densification issues [73] that make weak scaling studies
problematic. However, Graph500 remains the community standard for benchmarking weakly scaled graph
studies.

implementation, because it requires a matrix-matrix multiply followed by a reduce. This bulk-
synchronous approach forces the computer to write the output of the matrix-matrix multiply to
main memory before reading from main memory again in the reduce. A worthwhile area of pro-
gramming language research would be to use a computation graph to store the operations that
must happen, do a pass over the computation graph to identify pro!table kernels to fuse, generate
the CUDA kernel code at runtime, just-in-time (JIT) compile the code to machine code, and exe-
cute the fused kernel. This may be possible in GraphBLAS’s non-blocking mode where operations
are not required to return immediately after each operation, but only when the user requests an
output or an explicit wait.

Such an approach is what is done in machine learning, but with graph algorithms the researcher
is faced with additional challenges. One such challenge is that the runtime of graph kernels is
dependent on the input data, so in a multiple iteration algorithm such as BFS, SSSP or PR, it may
be pro!table to fuse two kernels in one iteration and two di"erent kernels in a di"erent iteration.
Another challenge is the problem of load balancing. Typically code that is automatically generated
is not as e#cient as hand-tuned kernels, and may not load-balance well enough to be e#cient.

Asynchronous execution model. For road network graphs, asynchronous approaches pioneered
by Enterprise [55] that do not require exiting the kernel until the breakpoint has been met is a way
to address the kernel launch problem. This opens the door to two avenues of research: (1) How can
one detect whether one is dealing with a road network that will require thousands of iterations
to converge rather than tens of iterations? (2) How can such an asynchronous execution model
be reconciled with GraphBLAS, which is based on the bulk-synchronous parallel model? The !rst
problem requires a system that detects whether the graph is chordal, planar, bipartite, etc. before
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Maybe CPU/GPU is not the ideal 
machine for graph problems…
● Lots of transistor budget for extra 

FLOPs, which we don’t need
● GPU has memory bandwidth, but 

at the cost of high latency

Time to look at different architectures!



The Graphcore GC200 Intelligence Processing Unit

Relevant IPU features:
● Matrix units for AI acceleration Booring
● MIMD rather than SIMD Better than GPUs

6
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• 1472 cores per chip 
• 6 Threads per core
• 6 cycles latency
• 624 KB SRAM/core



The Graphcore GC200 Intelligence Processing Unit

Relevant IPU features:
● Matrix units for AI acceleration Booring
● MIMD rather than SIMD Better than GPUs
● High on-chip memory bandwidth Important
● Low memory latency Yes please! (J.L. in 2018/19)
● Has very slow DRAM This will be a problem
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• 1472 cores per chip 
• 6 Threads per core
• 6 cycles latency
• 624 KB SRAM/core



The Story We are Looking For
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The Story We are Looking For
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Graph Neural Networks
Combination of MLPs and message passing steps.
Aggregation functions such as sum or average.

4

2

1

5

3

6

Aggregation

1

MLP2

42

MLP1MLP1

1 4 1 2 3 5 6

Johannes Langguth Efficient MWVC Heuristics using GNNs 18th October 2022 8 / 21

9

$$

$$

We are here now“Let’s just give it a try”
(J.L. in 2020)



written for a single GC2 IPU. In this paper we present a code
that is capable of scaling to multiple IPUs, as well as using
the newer GC200 IPU. The main challenges to overcome are
grounded in the fact that the IPU was not originally designed
for running graph algorithms. First, the data structures are not
well-suited for maximizing data locality in BFS. In order to
obtain high performance, we have to design a manual data
distribution. The optimum distribution also changes between
the two IPU versions. Second, IPU communication follows
static patterns, and has to be planned at compile time. To get
around this limitation, a 2-competitive solution was designed
for iPUG [7]. However, when moving to the multi-IPU scenario,
communication becomes much more costly since the device-
to-device links are considerably slower than the core-to-core
communication inside the IPU.

We present our solutions to these problems in the following
sections. While the new multi-IPU code is capable of running
BFS on larger graphs, the primary goal of this paper is to outline
techniques that can serve as a model for the implementation
of advanced graph algorithms in the future, many of which
use BFS as a subroutine. These include graph centralities and
other algorithms used in the analysis of social networks, such
as triangle counting, clustering, and matching. Thus, our paper
makes the following contributions:

1) We present the first implementation of a graph algorithm
on the new GC200 IPU, which also scales to multiple
IPUs.

2) We present an optimization that enables sparse commu-
nication in a dense framework, allowing us to implement
the sparse communication required for graph algorithms
in the communication model of the IPU.

3) We investigate the performance of our implementation on
a cluster of 8 IPUs and compare it to state-of-the-art GPU
codes. The results show that our iPUG code is highly
competitive, delivering more than twice the performance
of a cluster of 8 V100 GPUs in the Graph500 benchmark.

The remainder of the paper is organized as follows: we
introduce the IPU in Section II and discuss related BFS
work on other architectures in Section V. We present our
IPU implementation in Section III and our experiments in
Section IV. In Sections V and VI we survey related work,
discuss the results, and present our conclusions.

II. IPU HARDWARE

The Graphcore IPU consists of a large number of indepen-
dent units called tiles. Each tile consists of a core and a small
amount of SRAM memory. Each core runs six concurrent
threads in a fine-grained temporal multithreading scheme.
Unlike simultaneous multithreading, which is commonly used
in modern CPU and GPU designs, IPU threads are scheduled
consecutively in a fixed order. For that reason, the design is also
referred to as a barrel processor. In general, IPU instructions,
including loads and stores from the local tile memory, take
exactly 6 cycles. Thus, individual threads do not experience
latency since they execute one instruction per cycle in which
they are scheduled.

TABLE I
KEY ARCHITECTURAL FEATURES OF GC2 AND GC200 IPU.

Chip GC2 GC200

Number of tiles 1216 1472
Number of threads 7296 8832
Memory per tile 256KB 624KB

Total SRAM memory 311MB 918MB

Memory bandwidth 46.6TB/s 46.9TB/s

Aggregate tile-to-tile bandwidth 7.78TB/s 7.83TB/s

Total chip-to-chip bandwidth 320GB/s 320GB/s

Clock frequency 1.6GHz 1.33GHz

FP32 compute 31.1 TFLOPS/s 62.5 TFLOPS/s
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Fig. 1. Tile layout on the GC200 IPU processor.

The tiles are organized into islands which themselves are
grouped into columns. Together, the columns form the IPU,
as illustrated in Figure 1. The number of cores depends
on the IPU model. Table I gives an overview of the most
important features of the GC2 and GC200 IPUs. In previous
work, architectural details of the GC2 IPU were studied and
benchmarked exhaustively [8]. Since all cores can read from
memory concurrently, the aggregate memory bandwidth is
much higher than that of CPUs or GPUs. However, data that
is not local to a core must be moved between the tiles. A
tile is capable of sending 4 bytes and receiving 4 bytes per
cycle, which amounts to amounts to 5.3GB/s or 7.83TB/s for
all 1472 cores of the GC200. The network that connects the
cores inside the IPU is called the IPU exchange. The GC200
IPU can also access DRAM memory at a speed of about 20
GB/s. However, in this paper we only study problems that are
placed entirely in the SRAM memory.

Between the IPUs, data is transferred via the IPU-Link,
which performs both intra-node and inter-node communication.
It thus corresponds to both PCIe and Infiniband in CPU/GPU
systems (or alternatives such as NVIDIA NVLink and CRAY
Shasta). Each IPU has 10 IPU-links with a total bandwidth of
320 GB/s. Pairs of IPUs are connected with 12 links, among
themselves, which amount to a bandwidth of 192 GB/s. This
leaves 8 links to connect to other IPUs. These connections use
double-link cables. Thus they operate at 64GB/s. Up to 32
such pairs can be connected in a ladder configuration with a
bisection bandwidth of 128 GB/s. See Figure 2 for an example.

• 624 KB SRAM plus core form a tile
• 6 Threads per core
• 1472 tiles per chip 
• Need to exploit very wide parallelism

The GC200 IPU: Shared and Distributed Memory on a Chip



Dataflow-Based Programming Abstraction

• Data is arranged in immutable tensors
• Code is organized in codelets (compute vertices)
• Bipartite graph of data dependency
• Independent compute vertices are scheduled concurrently
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Bulk-Synchronous Parallel (BSP) Communication on the IPU

• Data exchange between concurrent phases
• Communication planned at compile time
• No communication/computation overlap
• No need for buffers



The GC200 IPU has 1472 individual cores and 8832 threads -
spread into 4 islands and 16 columns
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• 1472 cores per chip 
• 6 Threads per core
• 6 cycles latency
• 624 KB SRAM/core



Unrestricted point-to-point communication between tiles
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More complex communication patterns with broadcasts 
are possible 

15
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• Per tile BW: ~ 5 GB/s
• Aggregate BW: ~ 8TB/s
• No overlap
• Preplanned

communication, messy
to get around that.



• Poplar framework offers PGAS-style data exchange 
PGAS = Partitioned Global Address Space
(programmer sees shared memory, system handles data exchange)

• Communication can be optimized by controlling data placement
• Communication codes exist at compile time, but we can choose 

between calling different codes at runtime

Reduction in irregular computation 

Irregular Communication on the IPU



The IPU is a Barrel Processor

• Temporal multithreading
• 6 threads per core
• Scheduling order fixed

• Symmetric multithreading
(a.k.a. hyperthreading)

• 2/4/8 threads per core
• Scheduling order variable
• Allows latency hiding

• Individual thread does not experience latency but…
• To use all retirement slots, we need to keep all threads busy
• Easiest to do if all 6 threads work on independent subproblems, but…
• There is usually too little memory for that



Computation optimization is straightforward:
minimize number of instructions

Individual IPU Code Optimization is Easy
.LBB2_2: # =>This Inner Loop 
Header: Depth=1

ld32 $a1, $m5, $m15, $m7
{

ld32 $a2, $m6, $m15, $m4
f32mul $a1, $a2, $a1

}
{

ld32 $a3, $m5, $m15, $m4
f32add $a0, $a0, $a1

}
. . . # More of this stuff
{

add $m7, $m4, 16
f32mul $a1, $a2, $a3

}
f32add $a0, $a0, $a1
st32 $a0, $m0, $m15, $m4
sort4x16lo $m4, $m7, $m15
cmpslt $m7, $m4, $m1
brnz $m7, .LBB2_2



The Hello World of Graph Algorithms: BFS

L1

L2

L3

StartLet Q be the frontier
Let Q’ be the next 
frontier
Let G(V,E) be the 
Graph
Let B be visited nodes

• Basic measure of graph processing performance
• Single O(n+m) execution, no time for expensive partitioning etc…
• Need 2D block partitioning for power-law graphs 
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Mapping to the IPU



Single Device BFS – IPU vs GPU vs CPU

14 Anonymous Authors

ternative here. An exception are the larger and thus higher diameter delaunay
graphs which exhibit little parallelism. On average there are far fewer vertices
in the frontier each round than the IPU has threads, thus making the wide par-
allelism ine�cient. As a result, the CPU performs better than both IPU and
GPU, although the di↵erence between CPU and IPU is small. The only instance
where the GPU exceeds IPU performance is the very small and dense Journals,
and even there the di↵erence is very small.
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Fig. 4: Performace of iPUG compared to CPU and GPU for the Suiteparse in-
stances.

6.2 Graph 500 Scaling Experiment

In an additional experiment, we show the performance of the IPU in context
of the scaling behaviour of other BFS implementations. Results are shown in
Figure 5. We observe that the CPU type has little influence for all three codes.
On the other hand, the TiTech code is almost an order of magnitude faster than
GAP and the reference code, reaching almost 10 GTEPS. The CPU codes seem
to reach maximum performance at Scale 22.

The GPU implementations are consistently faster, with Gunrock reaching
almost 100 GTEPS at Scale 24. It also maintains a consistent and substantial
lead over Enterprise. Furthermore, while iPUG starts with a large advantage at
Scale 15, the gap closes to 1.5⇥ at Scale 19. Thus, due to the limitation in GPU
memory, it is not possible to say at which scale maximum IPU performance will
be attained, and whether it would be faster than Gunrock on the V100. Since
the larger instances have a higher fraction of isolated vertices, and removing such

• GC2 IPU (1st generation) beats V100 GPU by about 2x
• CG200 vs A100 is very comparable
• Very good performance/watt



IPU vs CPU
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6.2 Graph 500 Scaling Experiment

In an additional experiment, we show the performance of the IPU in context
of the scaling behaviour of other BFS implementations. Results are shown in
Figure 5. We observe that the CPU type has little influence for all three codes.
On the other hand, the TiTech code is almost an order of magnitude faster than
GAP and the reference code, reaching almost 10 GTEPS. The CPU codes seem
to reach maximum performance at Scale 22.

The GPU implementations are consistently faster, with Gunrock reaching
almost 100 GTEPS at Scale 24. It also maintains a consistent and substantial
lead over Enterprise. Furthermore, while iPUG starts with a large advantage at
Scale 15, the gap closes to 1.5⇥ at Scale 19. Thus, due to the limitation in GPU
memory, it is not possible to say at which scale maximum IPU performance will
be attained, and whether it would be faster than Gunrock on the V100. Since
the larger instances have a higher fraction of isolated vertices, and removing such

• Needs a lot of parallelism
• GPU is the real competitor
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Superstep

Why not more GTEPS?

23

• Global synchronization
• No automatic load balancing at 

all. Full imbalance penalty (as 
normal for 1472x distributed
memory)

• Dynamic load balancing makes 
little sense for BFS

• Far better results on dense
graphs

• Cannot beat CPU on high-
diameter graphs (little
parallelism)

• Still needs fewer active threads
than GPU: 

8.8K vs 6.6K - 212.9K
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2.3 Communication for scale-out: 3D IPU-Fabric with GCL 

The IPU-POD64 reference design builds on the innovative IPU-M2000 IPU-Fabric, designed to 
support massive scale out. The figure below shows, on the left, an abstracted view of the IPU-
M2000 with the IPU-Fabric interconnects comprising IPU-LinksTM, GW-Links (for jitter-free IPU-
to-IPU connectivity), and the Host-Link dual 100Gbps RDMA connection between the host 
server and each IPU-M2000. The small insert on the right shows how these interconnects are 
used as part of the scale-out of IPU-M2000 and the IPU-POD64: IPU-Links join IPU processors 
together both within IPU-M2000s as well as between IPU-M2000s. The IPU-Link connections 
in the IPU-POD64 form a 2D torus since the loops are closed top and bottom.  
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Scaling Out: Multi-IPU BFS

● Computation can scale to multiple IPUs
● BFS is extremely communication-heavy
● Large-scale problems are mostly network dependent



Using multiple IPUs, we are using the same mapping 
techniques as with the single device 
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Using multiple IPUs, we are using the same mapping 
techniques as with the single device 
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1 IPU, iPUG 2 IPUs, iPUG 4 IPUs, iPUG 8 IPUs, iPUG

1 GPU, Gunrock DOBFS 2 GPUs, Gunrock DOBFS 4 GPUs, Gunrock DOBFS 8 GPUs, Gunrock DOBFS

1 GPU, Gunrock Topdown 2 GPUs, Gunrock Topdown 4 GPUs, Gunrock Topdown 8 GPUs, Gunrock Topdown
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Fig. 5. Performance of the SuiteSparse instances (top) for the IPU M2000 and the V100 DGX-2 using iPUG and Gunrock, respectively. The lower plot shows
performance numbers of our synthetic Kronecker graphs, combined with Kronecker graphs from the SuiteSparse collection.

C. Runime Analysis

We aim to give an in-depth overview of the inner workings
of our algorithm and show the execution and inner timings of
our implementation. Each iteration of our algorithm contains
two major phases: (1) the expansion phase, in which the current
frontier is distributed to discover the future nodes to be visited,
and (2) the fold phase, which merges all discoveries from the
expansion phase and reduces them into a single vertex. Finally,
the fold phase generates the frontier for the next expansion
phase.

We compare the inner phase timings from weak and strong
scaling runs on Kronecker graphs. For the strong scaling results,
we used a kron21 16. We started with a kron20 16 using a
single IPU for the weak scaling experiment and scaled up to
a kron23 16 on eight IPUs. The results were generated with
the PopVision™ graph analyzer suite of tools used to extract
profiling information generated by the Poplar framework during
the compilation and execution phase. All results make use of
all of our optimizations, such as (sub)-queue packing.

Results: Figure 6 shows that the compute time to solve the
kron21 16 instance decreases by adding IPUs. The communi-

cation and execution time of the fold phase decreases as the
communication and computation only take place within one
IPU. The computing time in the expansion phase decreases
every round by 36% to 24%. The communication increases by
8⇥ going from one to two IPUs. However, this trend does not
continue linearly, as the communication time reduces when
going to 4 IPUs, only to increase by 2⇥ going from 4 to 8 IPUs.
In addition to the expand and fold phase, the program also
requires further overhead, such as globally switching the BSP-
supersteps, the reduction determining if the algorithm should
continue, and the reductions from our optimizations. We can
observe that the additional compute and communication time
within this overhead category increases to up to 28% of the
global runtime. We can explain the overhead increase through
the need for five additional global communication steps between
the IPUs.

For the weak edge-scaling experiments, we can observe that
the cycle overhead does not increase much when scaling from
1 to 8 IPUs. Like in the strong scaling experiment, both fold
communication and exchange decrease. The communication
phase of the expansion phase constantly increases from 2%

Multiple Device BFS – IPU vs GPU
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Fig. 5. Performance of the SuiteSparse instances (top) for the IPU M2000 and the V100 DGX-2 using iPUG and Gunrock, respectively. The lower plot shows
performance numbers of our synthetic Kronecker graphs, combined with Kronecker graphs from the SuiteSparse collection.

C. Runime Analysis

We aim to give an in-depth overview of the inner workings
of our algorithm and show the execution and inner timings of
our implementation. Each iteration of our algorithm contains
two major phases: (1) the expansion phase, in which the current
frontier is distributed to discover the future nodes to be visited,
and (2) the fold phase, which merges all discoveries from the
expansion phase and reduces them into a single vertex. Finally,
the fold phase generates the frontier for the next expansion
phase.

We compare the inner phase timings from weak and strong
scaling runs on Kronecker graphs. For the strong scaling results,
we used a kron21 16. We started with a kron20 16 using a
single IPU for the weak scaling experiment and scaled up to
a kron23 16 on eight IPUs. The results were generated with
the PopVision™ graph analyzer suite of tools used to extract
profiling information generated by the Poplar framework during
the compilation and execution phase. All results make use of
all of our optimizations, such as (sub)-queue packing.

Results: Figure 6 shows that the compute time to solve the
kron21 16 instance decreases by adding IPUs. The communi-

cation and execution time of the fold phase decreases as the
communication and computation only take place within one
IPU. The computing time in the expansion phase decreases
every round by 36% to 24%. The communication increases by
8⇥ going from one to two IPUs. However, this trend does not
continue linearly, as the communication time reduces when
going to 4 IPUs, only to increase by 2⇥ going from 4 to 8 IPUs.
In addition to the expand and fold phase, the program also
requires further overhead, such as globally switching the BSP-
supersteps, the reduction determining if the algorithm should
continue, and the reductions from our optimizations. We can
observe that the additional compute and communication time
within this overhead category increases to up to 28% of the
global runtime. We can explain the overhead increase through
the need for five additional global communication steps between
the IPUs.

For the weak edge-scaling experiments, we can observe that
the cycle overhead does not increase much when scaling from
1 to 8 IPUs. Like in the strong scaling experiment, both fold
communication and exchange decrease. The communication
phase of the expansion phase constantly increases from 2%

Multiple Device BFS – IPU vs GPU
1 IPU, iPUG 2 IPUs, iPUG 4 IPUs, iPUG 8 IPUs, iPUG

1 GPU, Gunrock DOBFS 2 GPUs, Gunrock DOBFS 4 GPUs, Gunrock DOBFS 8 GPUs, Gunrock DOBFS

1 GPU, Gunrock Topdown 2 GPUs, Gunrock Topdown 4 GPUs, Gunrock Topdown 8 GPUs, Gunrock Topdown

belg
iu

m
osm

cita
tio

nCite
seer

coAuth
ors

Cite
seer

coAuth
ors

DBLP

com
-O

rk
ut

com
-Y

outu
be

coPapers
Cite

seer

coPapers
DBLP

dela
unay

n17

dela
unay

n18

dela
unay

n19

holly
wood-2

009

lo
c-G

owalla

pre
fe

re
ntia

lA
tta

chm
ent

ro
adNet-C

A

soc-P
oke

c

webbase-1
M

wiki-t
opcats

wikip
edia

-2
0060925

100

101

102

103

104

105
T

h
ro

u
g
h
p
u
t
[M

T
E

P
S

]

kro
n

g500-lo
gn18

kro
n

g500-lo
gn19

kro
n

g500-lo
gn20

kro
n19

16

kro
n20

128

kro
n20

16

kro
n20

256

kro
n20

32

kro
n20

512

kro
n20

64

kro
n21

128

kro
n21

16

kro
n21

256

kro
n21

32

kro
n21

64

kro
n22

16

103

104

105

106

T
h
ro

u
g
h
p
u
t
[M

T
E

P
S

]

Fig. 5. Performance of the SuiteSparse instances (top) for the IPU M2000 and the V100 DGX-2 using iPUG and Gunrock, respectively. The lower plot shows
performance numbers of our synthetic Kronecker graphs, combined with Kronecker graphs from the SuiteSparse collection.

C. Runime Analysis

We aim to give an in-depth overview of the inner workings
of our algorithm and show the execution and inner timings of
our implementation. Each iteration of our algorithm contains
two major phases: (1) the expansion phase, in which the current
frontier is distributed to discover the future nodes to be visited,
and (2) the fold phase, which merges all discoveries from the
expansion phase and reduces them into a single vertex. Finally,
the fold phase generates the frontier for the next expansion
phase.

We compare the inner phase timings from weak and strong
scaling runs on Kronecker graphs. For the strong scaling results,
we used a kron21 16. We started with a kron20 16 using a
single IPU for the weak scaling experiment and scaled up to
a kron23 16 on eight IPUs. The results were generated with
the PopVision™ graph analyzer suite of tools used to extract
profiling information generated by the Poplar framework during
the compilation and execution phase. All results make use of
all of our optimizations, such as (sub)-queue packing.

Results: Figure 6 shows that the compute time to solve the
kron21 16 instance decreases by adding IPUs. The communi-

cation and execution time of the fold phase decreases as the
communication and computation only take place within one
IPU. The computing time in the expansion phase decreases
every round by 36% to 24%. The communication increases by
8⇥ going from one to two IPUs. However, this trend does not
continue linearly, as the communication time reduces when
going to 4 IPUs, only to increase by 2⇥ going from 4 to 8 IPUs.
In addition to the expand and fold phase, the program also
requires further overhead, such as globally switching the BSP-
supersteps, the reduction determining if the algorithm should
continue, and the reductions from our optimizations. We can
observe that the additional compute and communication time
within this overhead category increases to up to 28% of the
global runtime. We can explain the overhead increase through
the need for five additional global communication steps between
the IPUs.

For the weak edge-scaling experiments, we can observe that
the cycle overhead does not increase much when scaling from
1 to 8 IPUs. Like in the strong scaling experiment, both fold
communication and exchange decrease. The communication
phase of the expansion phase constantly increases from 2%



Monodomain simulation in cardiac electrophysiology using 
Lynx

● Tetrahedral mesh for finite volume simulation
● ODE reaction model (ten Tusher)
● PDE diffusion model (SpMV)
● Large number of identical time steps

Allows for lots of optimization techniques including load balancing and partitioning
29



Repeated SpMV: Minimize Communication via Partitioning

d
2x GC200 IPU 
FP32

V100 GPU
FP32

V100 GPU
FP64

PDE 0.21 1.208 1.836
ODE 2.52 2.056 2.822
Sum 2.75 3.264 4.658
PDE multistep 128:1 29.4 156.68 239.666

• GPU has more FLOPS for ODE (code does not use IPU matrix units)
• FP32 is a severe limitation for scientific computing
• PDE (SpMV) is much faster on IPU. Dominates multisteping.

VS



We are increasingly spending more time on exchanges with 
tiles receiving values for up to 80% of their cells

31



Currently, the IPU is compute bound; 
the ODE step is much slower than on the A100

32
32



IPU Partitioning Problem
Small scale distributed memory creates special partitioning problem:
1. Minimize cutsize (as usual)
2. Create large number of parts (1472) efficiently
3. Balance total part size (vertices plus ghost cells)
4. Partition hierarchically for multi-IPU
5. Optimize mapping along 1D ladder topology (hard)

Large benefit from load balanced and communication optimized data distribution
Very fast for e.g. Page-Rank 



Sequence Alignment

34



Smith Waterman Algorithm
Results

(IPU) iPuma Host (IPU) iPuma Device (CPU) SSW
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Figure III.5: Performance results comparing one GC200 IPU using iPuma against
one A100 GPU using ADEPT and a single-socket CPU using SSW and SeqAn.
GASAL2 does not support protein datasets.

III.4.5 Performance Single Device

Performance results for the single device comparison are shown in Figure III.5.
We ran experiments for both protein and DNA datasets with our round-robin and
greedy partitioning algorithms. For all protein datasets, we noticed a significant
performance improvement when using the greedy algorithm. However, for the
DNA datasets, round-robin worked almost equally well, which means that the
additional cost of running greedy does not result in a clear benefit. Therefore,
we only show the results of using round-robin partitioning on all DNA datasets
and greedy partitioning for all protein datasets.

As the IPU uses BSP (Section IPU Programming) for the orchestration at the
hardware level, all tiles synchronize when they finish processing all comparisons
in their assigned partition. Thus we are interested in the ratio between the
average and maximum makespan among all partitions. The ratio describes the
additional time needed because of the load imbalance among the tiles. Using
round-robin on the SIMD optimized DNA data sets we observe load imbalances
of about 17 %. On dna_all we see an average load imbalance of 44 % of the
maximum makespan. A similar trend is observed for all filtered protein datasets.
As protein datasets are using greedy for partitioning, we start o� with a much
lower imbalance of 3 % for protein_200 and 6 % for protein_600 . The longer and
more inhomogeneous the sequences become, the more di�cult it is to heuristically
balance them into even partitions. We can see an imbalance factor of 23 %,
and 250 % for protein_large, and protein_all, respectively. For protein_all,
the top 20 to 30 comparisons alone are responsible for the high imbalances, as

119

35

• MIMD IPU better at dealing with irregularity than SIMD GPU
• Host connection becomes a bottleneck



Other Applications

36

● SpMV: about 200 GFLOP/s
● Coloring (backtracking) with dynamic load balancing: 2x faster than CPU

● X-Drop sequence alignment: 4-10x vs A100
● BERT ~ 4x faster inference than A100  (4x slower on train)

● Hungarian algorithm (Matching): 4-10x vs A100



Conclusions

37

● GC 200 IPU often allows 2-10x speedups over A100 
● Both devices are very comparable (7nm, about 60 billion transistors)

● IPU implementations only work for specific sizes (small problems)
● Need lots of IPUs for larger problems

● First IPU implementations compete with very mature GPU codes 



And now for the bad News

38

• Bow IPU from 2022 is just upclocked GC200
• Not clear what the future of the IPU is like – this is a problem

?



And now for the bad News

40

• Bow IPU from 2022 is just upclocked GC200
• Softbank recently bought Graphcore – are we getting new IPUs? 

?



And now for the bad News

41

• Bow IPU from 2022 is just upclocked GC200
• Softbank recently bought Graphcore – are we getting new IPUs? 
• However: there are many competitors with similar chips
• Next step: apply lessons learned to other tile-centric devices
• Goal: develop a theory of tile-centric graph algorithms

?



Potential for Processing Large Graphs: Cerebras
WSE-2 Wafer Scale Engine

● Similar design to IPU
● Tiles with compute & SRAM memory 

● 850 × 1000 cores/tiles
● Roughly equivalent to 64 CPU/GPU/IPU

● Fast communication among neighboring processors (2D mesh)
Ø Miniature distributed memory no longer works here. 

Need to embed problem into 2D space. 



BFS on the Cerebras WSE-2 Wafer Scale Engine
● Working prototype
● Still based on 2D adjacency matrix decomposition  

● Neighbor too neighbor communication causes imbalance
● Exploit rectangular shape of WSE to add functional units (filters)

● Use additional tiles to increase available memory along diagonal

W
afer

Figure 3: Pre-reducers (black) are introduced into the
columns to filter along the reduction direction. Through
the introduction of the pre-reducers, more PEs of the
rectangular WSE can be utilized.

Figure 4: Pre-reducers are receiving six colors and a
seventh from the last pre-reducer. We call the color from
the last reducer the fast lane.

a vertex in the Graph500 graph instances has ef =
16 incoming/outgoing edges, which will result in 16
activation messages. Thus |E| := ef · |V |. This means

that the identity has, on average, an order of O(ef ·
|V |
m )

messages to process and receive from the fabric. The
fabric along the way to the identity has to handle
O(ef (

|V |
m �

|V |
m2 · �)) where � is the distance from the

identity PE.
Using filters, we can ideally remove a lot of these

seen messages. The computational load will be reduced
in the diagonal but globally increased. We can introduce
150 filter PEs, which means that for every six PEs, we
have a reduction PE as 6 = d850/150e. Coincidentally,
this also matches with the maximum available hardware
resources per single PE ??.

The workload thus is distributed over 141 = b850/6c
filter PEs (Figure 3), such that only O(|V |) messages
are arriving in the identities. Each reducer thus receives
six colors from incoming expand PEs and one color from
the previous pre-reducer. We need to alternate colors of
two adjacent fast lanes.

8.2 Split Identity The disadvantages of the identity
PE in the square approach are two-fold: Firstly, the
PE has more computational work, as it is responsible
for the expansion on the diagonal partition of Ai,i, and
it has to accept all packets for the incoming reduction
of the matrix row. Furthermore, the diagonal PE has
to maintain the dense parent vector, which creates a
computational but secondly a memory problem, as this
parent array with growing graph input size quickly

Figure 5: The functionality of the identity (dark
blue) moved out of the diagonal into three functional
blocks, the Memory (light blue) stores the distributed
backpointer array, Filter (checkered) is a binary filter
accepting the reduction of the frontier from left and
right, the Queue avoids deadlocks and holds the next
frontier to be broadcasted.

outgrows the memory of a single PE and, especially
if the PE has to also allocate space for Ai,i.

We propose splitting the identity PE functionality
from the square algorithm onto several PEs to balance
memory and compute resources while adding a transmis-
sion overhead.

The new functional pieces are composed as follows:

• Filter is a single PE, which stores St, a boolean filter
map. Activations are only passed the first time they
are seen, otherwise dropped. We removed the level
synchronous restrictions and are updating S imme-
diately after receiving an activation. Furthermore,
we do not need to wait until the end of the phase;
this cuts the memory usage in half.

• The Memory is responsible for keeping track of the
backpointer array, the output of the BFS, which
the G500 benchmark requires. We need to store at
least 32 bit to reference the global vertex identifier
responsible for activating a given vertex. To allow
for larger input sizes, we need to distribute the
memory PEs of the identity over multiple PEs.

• The Queue is used to store frontier broadcast
messages coming from the reduction, leading into
the next reduction phase. This is required, as we
would otherwise create a possible deadlock.

The two frontier wavelets making up one activation
get routed over the Memory PEs from the left and routed
over the Queue PEs from the right into the Filter. The
filter blocks the left or right side after a terminator ṗ#
was received from the opposing direction. If an activation
passes the Filter, the two wavelets get broadcasted into
the Memory and into the Queue to the left and right in
ideally one cycle per wavelet, as broadcast operations on
the fabric are supported. The Queue’s fabric filters out



Fair Comparisons Between Different Processors are Not Easy

Tim Rogers and Mahmoud Khairy, An Academic’s Attempt to Clear the Fog of the Machine Learning Accelerator War, ACM SIGARCH blog

MLPerf efficiency metrics



Next Step: Towards a Theory of Tile Centric Computing
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Traditional CPU: SRAM Computation Spreads over Time
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ML Accelerators: SRAM Computation Spreads over Cores
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One Ideal Case: Data Streaming
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• Best case: small persistent 
working set, large 
streamable data, lots of
operations on data

• Typical example: NN with
weights and training data

• Sequence alignment has
this structure

• Not the case for most
graph/ matrix algorithms



Ideal Case: Use lots of SRAM-based processors to exploit 
superlinear scaling

• Needs enough processors/SRAM to fit 
entire graph

• Needs enough prarallelism to run on lots 
of tiles (or use non-tile based
architecture)

• Needs fast and ideally flexible network 
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Total PDE ODE MPI

Cardiac simulation on 
Oakbridge-CX (Cascade lake)

Speedups for 64x nodes:

• PDE (SpMV) 128x

• ODE 60x

• MPI 8x

• Total 43x



Ideal Case: Use lots of SRAM-based processors to exploit 
superlinear scaling

• Should work well for high time, low space
complexity algotithms (e.g. exact
weighted matching)

• Unfortunately many such algorithms are
not parallel 

• Brute force approaches work, but this
may not help time to solution

• Kernelizations are VERY attractive



Application of the Idea: LLM Inference with Groq

• Groq TSP is another SRAM-based
processor

• Uses 572 TSPs to store entire LLM 
in SRAM

• Low latency
• Fastest system for LLM inference

(Llama-3)
• Streaming architecture, not ideal 

for most graph algorithms



Basic Model of Computation: RAM Machine

Boaz Barak: Introduction to Theoretical Computer Science

Load/Store at 
Unit cost

Note that Turing machines do not make this simplification. 

Unit cost is a simplification
Cost must be O(n1/3) 

O() notation does not 
reflect varying cost of
memory accesses.



Data Movement Cost depends on Data Size

Latency Numbers Every Programmer Should Know by Peter Norvig

• All efficient memory technologies lie on a pareto curve of the
ratio between bandwith/latency and size/cost

• Technologies not on the curve are not efficient
• This is a law



0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0

100

200

300

400

500

600

700

800

900

1000

G
B
/s

G
B

Capacity Bandwidth

Logarithmic Capacity/Speed Tradeoff

Space efficient algorithms are inherently faster (if you can select optimal hardware) 



How do these lessons apply to other ML Accelerators ?

63

Graphcore GC 200 IPU
● Great SpMV
● Slow ODE
● Good intra-device comm
● Inter-device a challenge
● MPI-inspired strategy works 

Cerebras WSE-2
● Great SpMV
● Pretty good ODE
● Intra-device comm a challenge
● Inter-device not better
● Needs completely new algorithms



Tiles are coming, One Way or Another

67

AMD 9684X CPU has
1.1 GB of L3 cache,
but a lot of NUMA 
effects on chip

With 135 million transistors, you can get a lot of cache…
But the internal structure becomes more and more tile based
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The Tile-based Graph Accelerator

What we would like...
● Large SRAM
● Some FLOPs
● No matrix or vector units
● Fine grained communication
● No global synchronization
● Nonlocal topology

● And a high-level description
of algorithms....


