
SCORE-P AND OMPT
Smoothing the bumpy road to OpenMP performance measurement

September 19, 2024 Jan André Reuter Jülich Supercomputing Centre (JSC)

Member of the Helmholtz Association



WHAT IS SCORE-P?

Score-P is a highly scalable performance
measurement tool
Support for multi-process, thread-parallel
and accelerator-based paradigms
Support for additional metrics (I/O, HW
counters, . . . )
Flexible measurement without
re-compilation:

Profile generation (CUBE4 format)
Event trace recording (OTF2 format)

Support for C, C++, Fortran and Python

Member of the Helmholtz Association September 19, 2024 Slide 1



OPENMP INSTRUMENTATION
Two adapters for OpenMP

Source-to-source instrumentation tool
Independent from compiler used
Instrumentation up to OpenMP 3.1
Various limitations → Code sometimes
has to be prepared for OPARI2

Especially with C++ and some Fortran
features

Standardised tool interface since
OpenMP 5.0
Enables development of tools based on
the OpenMP specification
Support for the latest and greatest
OpenMP features
Continuously expanded with new
versions

Member of the Helmholtz Association September 19, 2024 Slide 2



OPENMP TOOLS INTERFACE CALLBACKS

Interface offers callbacks for almost all OpenMP events.
Some callbacks are grouped by similar events (e.g. sync).
A tool can freely decide how many callbacks it wants to
implement.

Please note

Runtimes may not (fully) implement some callbacks.
Runtimes may behave differently for the same callback.

→ Careful investigation of runtimes required

ompt callback [NAME]

thread begin

thread end

implicit task

parallel begin

parallel end

masked

work

dispatch

sync region

reduction

task create

task schedule

lock init

lock destroy

mutex acquire

mutex acquired

mutex released

nest lock

flush

Member of the Helmholtz Association September 19, 2024 Slide 3



CALLBACK EXAMPLES

Callbacks transfer most information to tool
Tools are able to store additional information
Identification in user code via code pointer,
lookup e.g. via addr2line

But: Which arguments are passed for a
certain user code?

typedef void (* ompt_callback_parallel_begin_t)

(

ompt_data_t* encountering_task_data ,

const ompt_frame_t* encountering_task_frame ,

ompt_data_t* parallel_data ,

unsigned int requested_parallelism ,

int flags ,

const void* codeptr_ra

);

typedef void (* ompt_callback_work_t) (

ompt_work_t work_type ,

ompt_scope_endpoint_t endpoint ,

ompt_data_t* parallel_data ,

ompt_data_t* task_data ,

uint64_t count ,

const void* codeptr_ra

);

typedef void (* ompt_callback_task_create_t) (

ompt_data_t* encountering_task_data ,

const ompt_frame_t* encountering_task_frame ,

ompt_data_t* new_task_data ,

int flags ,

int has_dependences ,

const void* codeptr_ra

);

Member of the Helmholtz Association September 19, 2024 Slide 4



DUMPING RUNTIME INFO: OMPT-PRINTF

Specification gives guidelines, but offers
some freedom for runtime implementers.
To analyze runtimes, we developed a basic
tool dumping passed information.
Support for OpenMP 5.2 & TR13 via
separate feature branches.
Available on GitHub:
https://github.com/FZJ-JSC/ompt-printf

Member of the Helmholtz Association September 19, 2024 Slide 5

https://github.com/FZJ-JSC/ompt-printf


CHECKING SCORE-P AND RUNTIMES

Internal OpenMP CI, built with:
Official OpenMP 5.2 examples
Additional tests for tasks and teams
Regression and smoke tests

In total 554 tests, with more coming:
310 C / C++
244 Fortran

Tests uninstrumented and instrumented
program runs, includes ompt-printf

Allows for quick comparison of new
features and compiler versions

Member of the Helmholtz Association September 19, 2024 Slide 6



RUNTIME BUGS AND THEIR EFFECT ON SCORE-P

[0][Enter: parallel_begin]

parallel_data = 0 (0x25bfc0)

[0][Exit: parallel_begin]

parallel_data = 666000001 (0x25bfc0)

[0][parallel_end]

parallel_data = 666000001 (0x25bfc0)

[0][Enter: parallel_begin]

parallel_data = 666000001 (0x25bfc0)

[0][Exit: parallel_begin]

parallel_data = 666000002 (0x25bfc0)

[0][parallel_end]

parallel_data = 666000002 (0x25bfc0)

[0][lock_init] kind = lock

[0][mutex_acquire] kind = lock

[0][mutex_acquired] kind = lock

[1][mutex_acquire] kind = lock

[0][mutex_released] kind = lock

[1][mutex_acquire] kind = lock

[1][mutex_acquired] kind = lock

[1][mutex_released] kind = lock

[0][lock_destroy] kind = lock

[0][parallel_begin]

[0][implicit_task] endpoint = begin

[0][work] type = loop | endpoint = begin

[0][work] type = loop | endpoint = end

[1][thread_begin] type = worker

[1][implicit_task] endpoint = begin

[1][work] type = loop | endpoint = begin

[1][work] type = loop | endpoint = end

[1][sync_region] endpoint = begin

[0][sync_region] endpoint = begin

[0][sync_region] endpoint = end

[0][implicit_task] endpoint = end

[0][parallel_end]

[1][sync_region] endpoint = end

[1][implicit_task] endpoint = end

[1][thread_end]

Minor issues,
e.g. reusing data

Remediable issues,
e.g. missing test lock

information

Critical issues,
e.g. missing end event

Around 70 OMPT-related bugs were reported since Dec. 2022

Member of the Helmholtz Association September 19, 2024 Slide 7



RUNTIME SUPPORT

Widely adopted runtime support by
vendors
Almost all runtimes still have minor issues

Summary for Intel oneAPI 2024.1.0

Compiler Host Events
GCC 14.2 None

CCE 17.0.1 Partial
Clang 19.1.0 Full
NVHPC 24.7 Full

oneAPI 2024.2.1 Full
ROCm 6.2 Full

Member of the Helmholtz Association September 19, 2024 Slide 8



EXAMPLE – BT-MZ
System:

Ubuntu 22.04 LTS
Intel Core i7-1260P, 4P+8E cores
flang-new 19.1.0-rc3
Score-P 4d9083fd (Aug. 20th 2024)

Member of the Helmholtz Association September 19, 2024 Slide 9



WHAT ABOUT OVERHEAD?

Runtime has to call the registered tool
callbacks for each event
A tool handles the events, causing
overhead
Altogether, we want to have a low
overhead for accurate measurements
In 2019, a low overhead was identified
without a tool. OMPT caused noticable
overhead, but within acceptable range.

0.1 1 10 100

par

for

parfor

barrier

single

critical

lock

ordered

reduction

par task

master task

master task busy slaves

task barrier

cond task

nested task

nested master task

task wait

branch task tree

leaf task tree

Overhead [µs]

llvm-ompt-off scorep-opari2

llvm-ompt-on scorep-ompt

Score-P and OMPT, IWOMP 2019

Member of the Helmholtz Association September 19, 2024 Slide 10



OVERHEAD: TEST SETUP (1/2)

1 JURECA-DC CPU node
(2× AMD EPYC 7742, 512 GiB DDR4)
Stage 2024 JSC software stack

AOCC 4.1.0
Clang 16.0.6
NVHPC 23.7 (with & without OMPT)
oneAPI 2023.2.0

Benchmarks via JUBE benchmarking
environment

Member of the Helmholtz Association September 19, 2024 Slide 11

https://github.com/easybuilders/JSC/tree/2024
https://github.com/FZJ-JSC/JUBE


OVERHEAD: TEST SETUP (2/2)

Selected benchmarks:
6 SPEC HPC 2021 benchmarks
22 EPCC OpenMP 4.0 benchmarks

Test scenarios:
Uninstrumented
With ompt-printf mode 1: No output
Instrumented with Score-P
(a0b8195e, July 18th 2024)

Five runs per toolchain, per benchmark,
per test scenario

Member of the Helmholtz Association September 19, 2024 Slide 12



OVERHEAD: SPEC HPC 2021 (AOCC 4.1.0)

SPEC HPC benchmarks are mostly
compute reliant
Overhead visible, but in acceptable
range
High variation between benchmark
results, across all compilers

Especially 532.sph exa t and
521.miniswp t

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14

513.soma t

534.hpgmgfv t

521.miniswp t

505.lbm t

518.tealeaf t

532.sph exa t

no-tool empty-tool scorep-ompt

Member of the Helmholtz Association September 19, 2024 Slide 13



OVERHEAD: EPCC (OPENMP 4.0, CLANG 16.0.6)
Parallel regions cause noticable
overhead

EPCC has a very low
computation amount
Score-P needs to handle overdue
events
Affects task tests as well
Dependent on number of threads

Task tests did not finish for 128
cores

Score-P reported out of memory

Otherwise low overhead for
handling directives

0.1 1 10 100 1,000

parallel
for

parallel for
barrier

barrier var

single
ordered

atomic

atomic seqcst
reduction

parallel task
parallel task deps
master task deps

master task

master task busy slaves
conditional task

task wait
task barrier
nested task

nested master task
branch task tree

leaf task tree

Overhead [µs]

Disabled tool Empty tool Score-P (24 cores) Score-P (128 cores)

Member of the Helmholtz Association September 19, 2024 Slide 14



DISCUSSION (1/2) – OVERHEAD

Score-P has a low overhead for computation intensive applications.
Parallel regions cause high overhead due to overdue event handling.
Many (very small) parallel regions can skew results.
Many tasks can abort measurement: Improvements to memory handling required.

Member of the Helmholtz Association September 19, 2024 Slide 15



DISCUSSION (2/2) – OPENMP TOOLS INTERFACE

OMPT is a huge leap forward for tool developers compared to OPARI2.
Analyzing runtime releases for changes and bugs is a major task.
It took many bug reports and tests to have a working and stable adapter.
History may repeat itself with OpenMP 6.0
Our wish: Close collaboration between tool and runtime developers.

Member of the Helmholtz Association September 19, 2024 Slide 16



Thanks for your attention!
Any questions?

Member of the Helmholtz Association September 19, 2024 Slide 17



ACKNOWLEDGEMENTS

This work is funded by the BMBF as part of the ENSIMA project (Grant No. 16ME0630)

We acknowledge the EuroHPC Joint Undertaking for awarding this project access to the
EuroHPC supercomputer LUMI, hosted by CSC (Finland) and the LUMI consortium through a
EuroHPC Regular Access call.

Member of the Helmholtz Association September 19, 2024 Slide 18


