
Martin Clemens, Jonathan Fenske, Daniel Molka, Hirav Patel, Ronny Tschüter, Michael Wagner

German Aerospace Center
Institute of Software Methods for Product Virtualization
(HPC Competence Center – SP-HCC)

PERFORMANCE ANALYSIS
AND OPTIMIZATION OF CFD
APPLICATIONS

Agenda

▪ Scalability improvements of the FlowSimulator framework

▪ Investigation of HPC architectures using Amazon Web Services (AWS)

▪ Performance modelling of the CFD solver TRACE

▪ HPC operation

2
SP-HCC

3

SCALABILITY IMPROVEMENTS OF
THE FLOWSIMULATOR FRAMEWORK

SP-HCC

C
re

d
it: D

L
R

 (C
C

 B
Y

-N
C

-N
D

 3
.0

)

Hierarchical Partitioning

▪ Partitioning runtime (pure MPI)

▪ Mesh with 723M cells, 629M nodes

▪ Problem: In FlowSimulator partitioning does

not work anymore from a certain number of

processes on.

4
SP-HCC

Hierarchical Partitioning

▪ Partitioning data on multiple hardware hierarchy levels

▪ Can be done in two directions:

▪ First partition data among compute nodes, then on lower hierarchy level within compute nodes, …

▪ Benefit: reduced communication time, domain decomposition for less processes at once

▪ Drawback: higher imbalance factor

▪ First partition data among all processes, then redistribute partitions so that communication is

minimized in higher hierarchy level, …

▪ Benefit: reduced communication time, better imbalance factor

▪ Drawback: potentially computation of large number of partitions at the same time

5
SP-HCC

Hierarchical Partitioning Plugin for FlowSimulator

▪ Top down approach implemented as 2-level hierarchical partitioners

▪ To compute partitioning on each hierarchy level, an external graph partitioner is called

(ParMETIS or Zoltan)

▪ To review the influence of the partitioning, CODA strong scaling benchmarks with large

mesh (1.23B cells, 973M nodes) were done by taking the timings

▪ The partitioning were computed with ParMETIS because Zoltan does not work well for large

meshes

6
SP-HCC

Results

▪ CODA runtimes (4 cores/process)

7

Partitioning runtimes

SP-HCC

8

INVESTIGATION OF HPC
ARCHITECTURES USING AWS

C
re

d
it: D

L
R

 (C
C

 B
Y

-N
C

-N
D

 3
.0

)

SP-HCC

Architecture of Tested Nodes

▪ DLR CARO AMD EPYC Rome (Zen2)

[100 Gbps Infiniband]

▪ hpc7a AMD EPYC Genoa (Zen4)

[300 Gbps EFA (Elastic Fabric Adapter)]

▪ hpc6a AMD EPYC Milan (Zen3)

[100 Gbps EFA]

▪ c7gn, hpc7g ARM Graviton3 instances, same specs and perf.

[200 Gbps EFA]

▪ c6gn ARM Graviton2

[100 Gbps EFA]

9
SP-HCC Reference: https://aws.amazon.com/ec2/instance-types/

https://aws.amazon.com/ec2/instance-types/

Zen Architectures

10
SP-HCC

AWS Graviton Processor

• ARM 64bit architecture

• Graviton 3 is the successor of Graviton 2

• Graviton 3 (ARMv-8.4 ISA) vs Graviton 2 (ARMv-8.2 ISA)

• UMA – Uniform Memory Access system

• Single socket system with 64 cores

• 1 Node = 1 Socket

• Graviton3 – 8 memory channels

• L1 Cache - 64 kB (per core)

• L2 Cache - 1 MB (per core)

• L3 Cache - 32 MB (shared between 64 cores)

• Memory - 128 GB for Socket

• Graviton 3 (2.6 GHz) vs Graviton 2 (2.5Ghz)

• Graviton 3 has more core width than Graviton 2 - (higher IPC)

• Graviton 3 has DDR5 and faster memory channels than Graviton 2

11
SP-HCC

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 64

T
im

e
 [

m
in

]

Nodes

CODA Iterate time (L2 mesh 10 million elements)

Graviton3 (hpc7g)

AMD Zen2 (CARO)

AMD Zen3 (hpc6a)

AMD Zen4 (hpc7a)

CODA Iterate time comparison

12
SP-HCC

• Graviton3 (hpc7g) - 16 MPI tasks x 4 OMP threads per task (64 cores/node)

• CARO (Zen2) - 32 MPI tasks x 4 OMP threads per task (128 cores/node)

• hpc6a (Zen3) - 12 MPI tasks x 8 OMP threads per task (96 cores/node)

• hpc7a (Zen4) - 24 MPI tasks x 8 OMP threads per task (192 cores/node)

13

PERFORMANCE MODELLING OF THE
CFD SOLVER TRACE

SP-HCC

C
re

d
it: D

L
R

 (C
C

 B
Y

-N
C

-N
D

 3
.0

)

TRACE
Turbomachinery Research Aerodynamic Computational Environment

▪ DLR‘s standard CFD solver for

turbomachinery flows

▪ Also used in industrial design processes

by MTU Aero Engines AG and Siemens

Energy AG

▪ Steady and unsteady RANS solver on

structured and unstructured grids

▪ Hybrid parallelization with MPI and

OpenMP

14
SP-HCC

Extra-P

▪ Fix model parameters (#procs, #cells, polynomial degree, …)

▪ Run repeated measurements

→ experiment directory with Cube profiles

▪ Automatically generate performance model for every node in

the call tree using Extra-P

▪ Metrics include time, #calls, MPI bytes sent, …

15
SP-HCC

Testcase

▪ 6 grids with number of cells ranging from 2.5e6 to 8.1e7

→ strong scaling in p-direction

▪ Last line used as validation data

▪ Variables:

▪ n: number of cells

▪ p: number of processes

▪ Investigated routines part of not

optimized setup

SP-HCC
16

cells (n) # processes (p)

Low High

partitions

2.5e6 64 256 4

5.1e6 64 256 4

10.2e6 64 512 8

20.3e6 128 1024 8

40.8e6 256 2048 8

81.6e6 1024 4096 4

Results: Computation

▪ For every cell (n) lookup distance to wall in kd-tree (ideally log(n))

▪ Satisfying model

SP-HCC
17

Results: Communication

18
SP-HCC

▪ Deeper look in p^(5/2) runtime

necessary

▪ Model satisfying only in trend, not in

quantitative values

▪ Problems:

▪ Spread of measurement points

▪ Setup of testcase

19

HPC OPERATION

SP-HCC

C
re

d
it: D

L
R

 (C
C

 B
Y

-N
C

-N
D

 3
.0

)

HPC Systems operated by DLR-SP

20

• 2,168 CPU-nodes with 2 AMD EPYC 7601 (2x 32 cores)

• 664 CPU-nodes with 2 AMD EPYC 7702 (2x 64 cores)

• 10 GPU-nodes with 4 Nvidia A100 and 2 AMD EPYC 7702

• 17 PB Luste file system (0,5 PB SSD / 16,5 PB HDD)

• Operational since 2020/2023 g Replacement 2025

HPC cluster CARA, Dresden HPC cluster CARO, Göttingen

• 1,364 CPU-nodes with 2 AMD EPYC 7702 CPUs

• 8.4 PB Lustre file system (HDD with SSD cache)

• Operational since 2022 g Replacement 2027/28

Credit: DLR (CC BY-NC-ND 3.0)Credit: DLR (CC BY-NC-ND 3.0)

SP-HCC

https://www.dlr.de/de/service/impressum
https://www.dlr.de/de/service/impressum

HPC Operation

▪ Continuous application monitoring

▪ Identify applications with inefficient resource usage

▪ Identify candidates for detailed performance analysis

▪ Verify performance optimizations

▪ Track performance degradation

▪ Input for next HPC procurements

▪ Information about (performance) characteristics of our application mix

▪ Investigation of HPC architectures

▪ Performance modelling to estimate performance on future systems

21
SP-HCC

Acknowledgement

The authors gratefully acknowledge the scientific support and HPC resources

provided by the German Aerospace Center (DLR). The HPC system CARA is

partially funded by “Saxon State Ministry for Economic Affairs, Labour and

Transport“ and „Federal Ministry for Economic Affairs and Climate Action”.

22
SP-HCC

