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Agenda

▪ Scalability improvements of the FlowSimulator framework

▪ Investigation of HPC architectures using Amazon Web Services (AWS)

▪ Performance modelling of the CFD solver TRACE

▪ HPC operation
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SCALABILITY IMPROVEMENTS OF 
THE FLOWSIMULATOR FRAMEWORK
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Hierarchical Partitioning

▪ Partitioning runtime (pure MPI)

▪ Mesh with 723M cells, 629M nodes

▪ Problem: In FlowSimulator partitioning does 

not work anymore from a certain number of 

processes on.
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Hierarchical Partitioning

▪ Partitioning data on multiple hardware hierarchy levels

▪ Can be done in two directions:

▪ First partition data among compute nodes, then on lower hierarchy level within compute nodes, …

▪ Benefit: reduced communication time, domain decomposition for less processes at once

▪ Drawback: higher imbalance factor

▪ First partition data among all processes, then redistribute partitions so that communication is 

minimized in higher hierarchy level, …

▪ Benefit: reduced communication time, better imbalance factor

▪ Drawback: potentially computation of large number of partitions at the same time
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Hierarchical Partitioning Plugin for FlowSimulator

▪ Top down approach implemented as 2-level hierarchical partitioners

▪ To compute partitioning on each hierarchy level, an external graph partitioner is called 

(ParMETIS or Zoltan)

▪ To review the influence of the partitioning, CODA strong scaling benchmarks with large 

mesh (1.23B cells, 973M nodes) were done by taking the timings

▪ The partitioning were computed with ParMETIS because Zoltan does not work well for large 

meshes
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Results

▪ CODA runtimes (4 cores/process)
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Partitioning runtimes
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INVESTIGATION OF HPC 
ARCHITECTURES USING AWS
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Architecture of Tested Nodes

▪ DLR CARO AMD EPYC Rome (Zen2)

[100 Gbps Infiniband]

▪ hpc7a AMD EPYC Genoa (Zen4)

[300 Gbps EFA (Elastic Fabric Adapter)]

▪ hpc6a AMD EPYC Milan (Zen3)

[100 Gbps EFA]

▪ c7gn, hpc7g ARM Graviton3 instances, same specs and perf.

[200 Gbps EFA]

▪ c6gn ARM Graviton2

[100 Gbps EFA]
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Zen Architectures
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AWS Graviton Processor

• ARM 64bit architecture

• Graviton 3 is the successor of Graviton 2

• Graviton 3 (ARMv-8.4 ISA) vs Graviton 2 (ARMv-8.2 ISA)

• UMA – Uniform Memory Access system

• Single socket system with 64 cores

• 1 Node = 1 Socket

• Graviton3 – 8 memory channels

• L1 Cache - 64 kB (per core)

• L2 Cache - 1 MB (per core)

• L3 Cache - 32 MB (shared between 64 cores)

• Memory - 128 GB for Socket

• Graviton 3 (2.6 GHz) vs Graviton 2 (2.5Ghz)

• Graviton 3 has more core width than Graviton 2 - (higher IPC)

• Graviton 3 has DDR5 and faster memory channels than Graviton 2
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CODA Iterate time (L2 mesh 10 million elements)

Graviton3 (hpc7g)
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CODA Iterate time comparison
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• Graviton3 (hpc7g) - 16 MPI tasks x 4 OMP threads per task (64 cores/node)

• CARO (Zen2) - 32 MPI tasks x 4 OMP threads per task (128 cores/node)

• hpc6a (Zen3) - 12 MPI tasks x 8 OMP threads per task (96 cores/node)

• hpc7a (Zen4) - 24 MPI tasks x 8 OMP threads per task (192 cores/node) 
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PERFORMANCE MODELLING OF THE 
CFD SOLVER TRACE
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TRACE
Turbomachinery Research Aerodynamic Computational Environment

▪ DLR‘s standard CFD solver for 

turbomachinery flows 

▪ Also used in industrial design processes 

by MTU Aero Engines AG and Siemens 

Energy AG

▪ Steady and unsteady RANS solver on 

structured and unstructured grids

▪ Hybrid parallelization with MPI and 

OpenMP
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Extra-P

▪ Fix model parameters (#procs, #cells, polynomial degree, …) 

▪ Run repeated measurements 

→ experiment directory with Cube profiles 

▪ Automatically generate performance model for every node in 

the call tree using Extra-P

▪ Metrics include time, #calls, MPI bytes sent, …

15
SP-HCC



Testcase

▪ 6 grids with number of cells ranging from 2.5e6 to 8.1e7 

→ strong scaling in p-direction

▪ Last line used as validation data

▪ Variables: 

▪ n: number of cells

▪ p: number of processes 

▪ Investigated routines part of not

optimized setup

SP-HCC
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# cells (n) # processes (p)

Low         High

# partitions

2.5e6 64 256 4

5.1e6 64 256 4

10.2e6 64 512 8

20.3e6 128 1024 8

40.8e6 256 2048 8

81.6e6 1024 4096 4



Results: Computation

▪ For every cell (n) lookup distance to wall in kd-tree (ideally log(n))

▪ Satisfying model
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Results: Communication
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▪ Deeper look in p^(5/2) runtime 

necessary

▪ Model satisfying only in trend, not in 

quantitative values

▪ Problems: 

▪ Spread of measurement points

▪ Setup of testcase
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HPC OPERATION
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HPC Systems operated by DLR-SP
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• 2,168 CPU-nodes with 2 AMD EPYC 7601 (2x 32 cores)

• 664 CPU-nodes with 2 AMD EPYC 7702 (2x 64 cores)

• 10 GPU-nodes with 4 Nvidia A100 and 2 AMD EPYC 7702

• 17 PB Luste file system (0,5 PB SSD / 16,5 PB HDD)

• Operational since 2020/2023 g Replacement 2025

HPC cluster CARA, Dresden HPC cluster CARO, Göttingen

• 1,364 CPU-nodes with 2 AMD EPYC 7702 CPUs

• 8.4 PB Lustre file system (HDD with SSD cache)

• Operational since 2022 g Replacement 2027/28

Credit: DLR (CC BY-NC-ND 3.0)Credit: DLR (CC BY-NC-ND 3.0)
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https://www.dlr.de/de/service/impressum
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HPC Operation

▪ Continuous application monitoring

▪ Identify applications with inefficient resource usage

▪ Identify candidates for detailed performance analysis

▪ Verify performance optimizations

▪ Track performance degradation

▪ Input for next HPC procurements

▪ Information about (performance) characteristics of our application mix

▪ Investigation of HPC architectures

▪ Performance modelling to estimate performance on future systems 
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