
Edgar Gabriel

Open MPI und ADCL

Kommunikationsbibliotheken für parallele,
wissenschaftliche Anwendungen

Edgar Gabriel
Department of Computer Science

University of Houston
gabriel@cs.uh.edu

Edgar Gabriel

Is MPI dead?
New MPI libraries released in the last three years:
• LAM/MPI 7.x re-implementation of LAM/MPI focusing on a

component architecture
• MPICH2 all new version by ANL
• Open MPI all new public domain implementation
• MVAPICH/2 (public domain) MPI libraries for

InfiniBand interconnects

• Intel MPI commercial cluster MPI library based on
MPICH2

• HP-MPI MPI library for clusters
• Voltaire MPI etc. vendor specific derivatives of MPICH-

1.2.x for InfiniBand

Edgar Gabriel

Open MPI Team

PACX-MPI
LAM/MPI

LA-MPI
FT-MPI

Edgar Gabriel

Goals
• All of MPI-2
• Thread safety (MPI_THREAD_MULTIPLE)
• Based on a component architecture

– Flexible run-time tuning
– “Plug-ins” for different capabilities (e.g., different networks)

• Optimized performance
– Low latency and High bandwidth
– Polling vs. asynchronous progres

• Production quality
• Open source

– Vendor-friendly license (BSD)
– Bring together “MPI-smart” developers

• Prevent “forking” problem
– Community / 3rd party involvement

Edgar Gabriel

MPI Component Architecture (MCA)

User application

MPI API

MPI Component Architecture (MCA)

Framework

C
om

p.

C
om

p .

C
om

p .

…

Framework

C
om

p.

C
om

p .

C
om

p .

…

Framework

C
om

p.

C
om

p .

C
om

p .

…

Framework
C

om
p.

C
om

p .

C
om

p .
…

Framework

C
om

p.
C

om
p .

C
om

p .

…

Framework

C
om

p.

C
om

p .

C
om

p .

…

Framework

C
om

p.

C
om

p .

C
om

p .

…

…

Edgar Gabriel

MCA Component Frameworks
• Components divided into three categories

– Back-end to MPI API functions
– Run-time environment
– Infrastructure / management

• Rule of thumb:
– “If we’ll ever want more than one implementation, make it

a component”

Edgar Gabriel

MCA Component Types
• MPI types

– P2P management
– P2P transport
– Collectives
– Topologies
– MPI-2 one-sided
– MPI-2 IO
– Reduction Operations

• Run-time env. Types
– Out of band communication
– Process control
– Global data registry

• Management types
– Memory pooling
– Memory caching
– Common

Edgar Gabriel

Component / Module Lifecycle
• Component

– Open: per-process
initialization

– Selection: per-scope
determine if want to use

– Close: per-process
finalization

• Module
– Initialization: if component

selected
– Normal usage /

checkpoint
– Finalization: per-scope

cleanup

Selection

Initialization

Finalization

Checkpoint
restart

Normal
usage

Open

Close

M
od

ul
e

C
om

po
ne

nt
C

om
p.

Edgar Gabriel

User application

MPI API

MPI Component Architecture (MCA)

PML

O
B1 …

BTL

TC
P/

IP
Sh

a r
e d

 M
em

IB…

MPool

gm ib sm…

RCache

rb …

Point-to-Point

BML

R
2 …D
R

Edgar Gabriel

Pt-2-Pt Components
• PML – P2P Management Layer

– Provides MPI Point-to-point
semantics

– Message Progression
– Request Completion and

Notification
• Internal MPI messaging protocols

– Eager send
– Rendezvous

• Support for various types of
interconnect
– Send/Recv
– RDMA
– Hybrids

• BTL – Byte Transfer Layer
– Data mover
– Message Matching
– Responsible for own progress

(polling or async)

• BML – BTL Management Layer
– Thin multiplexing layer over

BTL’s
– Manages peer resource

discovery

Edgar Gabriel

Performance Results
• 3-D Finite Difference with four different implementations of the occurring

communication pattern evaluated:
– fcfs: first-come first-serve using non-blocking

communication and derived datatypes
– fcfs-pack: first-come first-serve using non-blocking

operations and pack/unpack
– overlap: first-come first-serve using non-blocking

operations, derived datatypes and overlapping
communication and computation

– ordered: using blocking Send/Recv operation with derived
datatypes

• Tests executed on
– cacau (HLRS): EM64T cluster using an InfiniBand and GEthernet
– phobos (ZIH): Opteron cluster using InfiniBand

• Three different MPI libraries tested:
– Open MPI v1.0.1
– Intel MPI 1.0
– MVAPICH 1.2.

Edgar Gabriel

Performance Results (I)
Execution time for 200 iterations on 64 processes/ 32 nodes on phobos

Comparison of Open MPI and MVAPICH on Phobos

0

2

4

6

8

10

12

14

fcfs fcfs-pack ordered overlap

ex
ec

ut
io

n
tim

e
[s

ec
]

128x128x128 MVAPICH2
128x128x128 Open MPI
256x128x128 MVAPICH2
256x128x128 Open MPI

Edgar Gabriel

Performance Results (II)

Comparison of Open MPI and Intel MPI on cacau

0

2

4

6

8

10

12

14

fcfs fcfs-pack ordered overlap

ex
ec

ut
io

n
tim

e
[s

ec
]

Open MPI 128x64x64
Intel MPI 128x64x64
Open MPI 128x128x64
Intel MPI 128x128x64

Execution time for 200 iterations on 16 processors / 16 nodes over IB

Edgar Gabriel

Performance Results (III)

Comparison of Open MPI and Intel MPI 16 on cacau

0

2

4

6

8

10

12

14

fcfs fcfs-pack ordered overlap

ex
ec

ut
io

n
tim

e
[s

ec
]

Open MPI 128x64x64
Intel MPI 128x64x64
Open MPI 128x128x64
Intel MPI 128x128x64

Execution time for 200 iterations on 16 processors / 16 nodes over GE

Edgar Gabriel

Current status (I)
• Current stable release: v1.0.2
• Last week branched for v1.1

– Expected to be released May/June/July
– Tuned collective communication component
– One-sided communication component
– Data reliability

• Supported operating systems
– Linux
– OS X (BSD)
– Solaris *

– AIX *
* Less frequently tested

Edgar Gabriel

Current status (II)
• Supported network

interconnects
– TCP
– Shared memory
– Myrinet

• GM, MX
– Infiniband

• mVAPI, OpenIB
– Portals

• Supported batch
schedulers
– rsh / ssh
– BProc (current)
– PBS / Torque
– SLURM
– BJS (LANL BProc

Clustermatic)
– Yod (Red Storm)

Edgar Gabriel

Currently ongoing work
• Data reliability for point-to-point operations
• Definition of new collective framework collv2

– Selection on a per-function bases (instead of per
component basis in v1)

• Coordinated checkpoint-restart capabilities

• ORTE v2
– Relevant for dynamic process management

Edgar Gabriel

ADCL - Motivation (I)
• Finite difference code using regular domain decomposition

– Data exchange at process boundaries required in every iteration
of the solver

– Typically implemented by a sequence of point-to-point operations

Edgar Gabriel

Motivation (III)
Execution time for 200 iterations on 32 processes/processors

0

5

10

15

20

25

30

128x128x64 IB 128x128x128 IB 128x128x64 TCP 128x128x128 TCP

ex
ec

ut
io

n
tim

e
[s

ec
]

fcfs

fcfs-pack

ordered

overlap

Edgar Gabriel

How to implement the required
communication pattern?

• Dependence on platform
– Some functionality only supported (efficiently) on

certain/platforms or with certain network interconnects
• Dependence on MPI library

– Does the MPI library support all available methods
– Efficiency in overlapping communication and computation
– Quality of the support for user defined datatypes

• Dependence on application
– Problem size
– Ratio of communication to computation

Edgar Gabriel

• Problem: How can an (average) user understand the
myriad of implementation options and their impact on the
performance of the application?

• (Honest) Answer: no way
– Abstract interfaces for application level communication

operations required ADCL
– Statistical tools required to detect correlations between

parameters and application performance

Edgar Gabriel

ADCL - Adaptive Data and
Communication Library

• Goals:
– Provide abstract interfaces for often occurring application

level communication patterns
• Collective operations
• Not-covered by MPI specification

– Provide a wide variety of implementation possibilities and
decision routines which choose the fastest available
implementation (at runtime)

• Not replacing MPI, but add-on functionality
– Uses many features of MPI

Edgar Gabriel

ADCL – components (I)

1. Static (parallel) configure step
– Exclude methods not supported by the MPI library
– Determine characteristics of the MPI library, e.g.

• MPI_Send vs. MPI_Isend vs. MPI_Put vs. MPI_Get
• Effect of MPI_Alloc_mem
• Derived Datatypes vs. MPI_Pack/MPI_Unpack
• Efficiency of overlapping communication and computation
• …

– Characteristics stored as attributes of the library

Edgar Gabriel

ADCL – components (II)

2. ADCL Methods and Runtime library
– Collection of all available implementations for a certain

communication operation
– Runtime decision routines

• Matching of requirements of an implementation to the
attributes set by the parallel configure step

• Testing at runtime
– Monitoring of the performance

• Used for initiating re-evaluation of a decision
3. Historic learning

– Input file
– Usage of performance skeletons (cooperation with Jaspal

Subhlok)

Edgar Gabriel

Classification of implementations
1. Data transfer primitives

– Blocking point-to-point operations
– Non-blocking point-to-point operations
– Persistent request operations
– One-sided operations
– Collective operations

2. Mapping of the communication pattern to data transfer operations
– Direct-transfer vs. Variable-transfer
– Single-block vs. dual-block implementations

3. Handling of non-contiguous messages
– Sending each element separately
– Pack/unpack
– Derived datatypes

Edgar Gabriel

ADCL – code sample
/* describe neighborhood relations using Topology

functions of MPI */
MPI_Cart_create (comm, n, dims[n], period, reorder,

&cart_comm);

/* Register a data structure for communication operations*/
ADCL_Register_dense_matrix (matrix, n, matrix_dims[n],

k, submatrix_dims[k],
num_ghostcells, distance,
cart_comm, &adcl_request);

…
/* Start a blocking communication for the registered matrix

on the provided communicator */
ADCL_Start (&adcl_request);
…

Edgar Gabriel

Current status of ADCL

• Application driven
– CMAQ: air-quality code

(Daewon Byun)

– Multi-scale blood-flow
simulation (Marc Garbey)

Edgar Gabriel

Available implementations for 3-D
neighborhood communication

Variable-transfer, dual-block
Variable-transfer, single-block
Direct-transfer, dual-block
Direct-transfer, dual-block
Direct-transfer, dual-block
Direct-transfer, dual-block
Direct-transfer, single-block
Direct-transfer, dual-block
Direct-transfer, single-block
Direct-transfer, single-block
Direct-transfer, single-block

Communication structure

Der. datatypesNon-blockingtopo-overlap
Der. datatypesNon-blockingtopo
Der. datatypesOne-sidedput-start
Der. datatypesOne-sidedget-start
Der. datatypesOne-sidedput-fence
Der. datatypesOne-sidedget-fence
Der. datatypesCollectivealltoallw
Der. datatypesNon-blockingoverlap
Pack/UnpackNon-blockingfcfs-pack
Der. datatypesNon-blockingfcfs
Der. datatypesBlockingordered

Handling of non-
cont. messages

Data transfer
primitive

Edgar Gabriel

Summary
• Open MPI

– a component based, flexible implementation of the MPI-1
and MPI-2 specifications

– Resolves some of the issues seen on today’s cluster with
other MPI libraries

• ADCL:
– An adaptive communication library for abstracting often

occurring application level communication operations
– Simplifies the development of portable and performant

code for scientific computing

