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Is MPI dead?

New MPI libraries released in the last three years:

« LAM/MPI 7.x re-implementation of LAM/MPI focusing on a
component architecture

e MPICH2 all new version by ANL

« Open MPI all new public domain implementation

« MVAPICH/2 (public domain) MPI libraries for
InfiniBand interconnects

e Intel MPI commercial cluster MPI library based on
MPICH2

e HP-MPI MPI library for clusters

Voltaire MPI etc.
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vendor specific derivatives of MPICH-

1.2.x for InfiniBand




Open MPI Team
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Goals %

Thread safety ( MPI_THREAD_ MULTIPLE )
Based on a component architecture

— Flexible run-time tuning

— “Plug-ins” for different capabilities (e.g., different networks)
Optimized performance

— Low latency and High bandwidth

— Polling vs. asynchronous progres
Production quality
Open source

— Vendor-friendly license (BSD)

— Bring together “MPI-smart” developers
Prevent “forking” problem

— Community / 3rd party involvement
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MPI Component Architecture (MCA)

User application
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MCA Component Frameworks

 Components divided into three categories
— Back-end to MPI API functions
— Run-time environment
— Infrastructure / management

 Rule of thumb:

— “If we’ll ever want more than one implementation, make it
a component”




MCA Component Types

« MPI types

P2P management
P2P transport
Collectives
Topologies

MPI-2 one-sided
MPI-2 10

Reduction Operations
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Run-time env. Types

— Out of band communication
— Process control

— Global data registry

Management types

— Memory pooling
— Memory caching
— Common
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Component

— Open: per-process
Initialization

— Selection: per-scope
determine if want to use

— Close: per-process
finalization

Module

— Initialization: if component
selected

— Normal usage /
checkpoint

— Finalization: per-scope
cleanup




Point-to-Point

User application
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Pt-2-Pt Components

PML — P2P Management Layer

— Provides MPI Point-to-point
semantics

— Message Progression

— Request Completion and
Notification

Internal MPl messaging protocols
— Eager send
— Rendezvous

Support for various types of
interconnect

— Send/Recv
— RDMA
— Hybrids
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BTL — Byte Transfer Layer

— Data mover
— Message Matching

— Responsible for own progress

(polling or async)

BML — BTL Management Layer
— Thin multiplexing layer over

BTL's

— Manages peer resource

discovery




Performance Results

« 3-D Finite Difference with four different implementations of the occurring
communication pattern evaluated:

— fcfs: first-come first-serve using non-blocking
communication and derived datatypes

— fcfs-pack: first-come first-serve using non-blocking
operations and pack/unpack

— overlap: first-come first-serve using non-blocking
operations, derived datatypes and overlapping
communication and computation

— ordered: using blocking Send/Recv operation with derived
datatypes

 Tests executed on
— cacau (HLRS): EM64T cluster using an InfiniBand and GEthernet
— phobos (ZIH): Opteron cluster using InfiniBand

» Three different MPI libraries tested:
— Open MPI v1.0.1

— Intel MPI1 1.0
— MVAPICH 1.2.




Performance Results (1)

Execution time for 200 iterations on 64 processes/ 32 nodes on phobos
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Performance Results (Il)

Execution time for 200 iterations on 16 processors / 16 nodes over IB
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Performance Results (lI1)

Execution time for 200 iterations on 16 processors / 16 nodes over GE

Comparison of Open MPI and Intel MPI 16 on cacau
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Current status (I)

Current stable release: v1.0.2
Last week branched for v1.1
— Expected to be released May/June/July
— Tuned collective communication component
— One-sided communication component
— Data reliability

Supported operating systems
— Linux

— 0OS X (BSD)

— Solaris *

— AIX”
" Less frequently tested
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Current status (I

e Supported network e Supported batch

Interconnects schedulers

— TCP — rsh/ ssh

— Shared memory — BProc (current)

— Myrinet — PBS / Torque
e GM, MX — SLURM

— Infiniband — BJS (LANL BProc
« mVAPI, OpenIB Clustermatic)

— Portals — Yod (Red Storm)




Currently ongoing work

Data reliability for point-to-point operations

Definition of new collective framework collv2

— Selection on a per-function bases (instead of per
component basis in v1)

Coordinated checkpoint-restart capabilities

ORTE v2
— Relevant for dynamic process management
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ADCL - Motivation (I)

Finite difference code using regular domain decomposition

— Data exchange at process boundaries required in every iteration

of the solver
— Typically implemented by a sequence of point-to-point operations
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Motivation (lI1)

Execution time for 200 iterations on 32 processes/processors
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How to implement the required
communication pattern?

 Dependence on platform

— Some functionality only supported (efficiently) on
certain/platforms or with certain network interconnects

 Dependence on MPI library
— Does the MPI library support all available methods
— Efficiency in overlapping communication and computation
— Quality of the support for user defined datatypes
 Dependence on application
— Problem size
— Ratio of communication to computation




 Problem: How can an (average) user understand the
myriad of implementation options and their impact on the
performance of the application?

 (Honest) Answer: no way

— Abstract interfaces for application level communication
operations required — ADCL

— Statistical tools required to detect correlations between
parameters and application performance




ADCL - Adaptive Data and
Communication Library

e Goals:

— Provide abstract interfaces for often occurring application
level communication patterns

» Collective operations

* Not-covered by MPI specification

— Provide a wide variety of implementation possibilities and
decision routines which choose the fastest available
Implementation (at runtime)

* Not replacing MPI, but add-on functionality
— Uses many features of MPI




ADCL — components (I)

1. Static (parallel) configure step
— Exclude methods not supported by the MPI library
— Determine characteristics of the MPI library, e.g.
e MPI_Sendvs. MPI _Isend vs. MP1_Putvs. MP1_Get
 Effectof MPI_Alloc_mem
« Derived Datatypes vs. MP1 _Pack/MP1_Unpack

« Efficiency of overlapping communication and computation

— Characteristics stored as attributes of the library




ADCL — components (Il)

2. ADCL Methods and Runtime library

— Collection of all available implementations for a certain
communication operation

— Runtime decision routines

e Matching of requirements of an implementation to the
attributes set by the parallel configure step

 Testing at runtime
— Monitoring of the performance

« Used for initiating re-evaluation of a decision
3. Historic learning

— Input file
— Usage of performance skeletons (cooperation with Jaspal

Subhlok)
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Classification of implementations

Data transfer primitives

— Blocking point-to-point operations

— Non-blocking point-to-point operations
— Persistent request operations

— One-sided operations

— Collective operations

2. Mapping of the communication pattern to data transfer operations

3.

L

— Direct-transfer vs. Variable-transfer

— Single-block vs. dual-block implementations
Handling of non-contiguous messages

— Sending each element separately

— Pack/unpack

— Derived datatypes
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ADCL — code sample

/* describe neighborhood relations using Topology
functions of MPI */
MP1 _Cart create ( comm, n, dims[n], period, reorder,
&cart_comm);

/* Register a data structure for communication operations*/
ADCL_Register_dense matrix ( matrix, n, matrix _dims[n],
k, submatrix_dims[k],
num_ghostcells, distance,
cart_comm, &adcl request);

/* Start a blocking communication for the registered matrix
on the provided communicator */

ADCL_Start ( &adcl _request ); Zé:::;77
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Current status of ADCL

_ . Southeast Texas
« Application driven Jul 7. 2000 8 AM
— CMAQ: air-quality code
(Daewon Byun)

— Multi-scale blood-flow
simulation (Marc Garbey)
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Avalilable implementations for 3-D
neighborhood communication

Data transfer | Communication structure Handling of non-

primitive cont. messages
ordered Blocking Direct-transfer, single-block Der. datatypes
fcfs Non-blocking | Direct-transfer, single-block Der. datatypes
fcfs-pack Non-blocking | Direct-transfer, single-block Pack/Unpack
overlap Non-blocking | Direct-transfer, dual-block Der. datatypes
alltoallw Collective Direct-transfer, single-block Der. datatypes
get-fence One-sided Direct-transfer, dual-block Der. datatypes
put-fence One-sided Direct-transfer, dual-block Der. datatypes
get-start One-sided Direct-transfer, dual-block Der. datatypes
put-start One-sided Direct-transfer, dual-block Der. datatypes
topo Non-blocking | Variable-transfer, single-block | Der. datatypes
topo-overlap | Non-blocking | Variable-transfer, dual-block Der. datatypes
“ Edgar Gabriel Uﬁ@




Summary

« Open MPI

— a component based, flexible implementation of the MPI-1
and MPI-2 specifications

— Resolves some of the issues seen on today’s cluster with
other MPI libraries

« ADCL:

— An adaptive communication library for abstracting often
occurring application level communication operations

— Simplifies the development of portable and performant
code for scientific computing




