Open MPI und ADCL

Kommunikationsbibliotheken fur parallele,
wissenschaftliche Anwendungen

Edgar Gabriel
Department of Computer Science
University of Houston
gabriel@cs.uh.edu

Is MPI dead?

New MPI libraries released in the last three years:

« LAM/MPI 7.x re-implementation of LAM/MPI focusing on a
component architecture

e MPICH2 all new version by ANL

« Open MPI all new public domain implementation

« MVAPICH/2 (public domain) MPI libraries for
InfiniBand interconnects

e Intel MPI commercial cluster MPI library based on
MPICH2

e HP-MPI MPI library for clusters

Voltaire MPI etc.

m Edgar Gabriel

vendor specific derivatives of MPICH-

1.2.x for InfiniBand

Open MPI Team

Cisco SyYSTEMS

el
GUﬂmlmi RE

A\

EEEEEEEEEEEE

@dun

micresystems

A
- LosAlamos

TIONAL LARD
&

.
=

parvasivaizehuolgylabs
AY IHEIENA PHIVERRITY

CSeUH

Goals %

Thread safety (MPI_THREAD_ MULTIPLE)
Based on a component architecture

— Flexible run-time tuning

— “Plug-ins” for different capabilities (e.g., different networks)
Optimized performance

— Low latency and High bandwidth

— Polling vs. asynchronous progres
Production quality
Open source

— Vendor-friendly license (BSD)

— Bring together “MPI-smart” developers
Prevent “forking” problem

— Community / 3rd party involvement

Edgar Gabriel

MPI Component Architecture (MCA)

User application

()
(& J
e N

MPI Component Architecture (MCA)

Y,

e N N N N N ™)
Framework | | Framework | | Framework | | Framework | | Framework || Framework Framework

_ J VAN VAN VAN J U Y, \ J
ol o o|| af a ol all & ol all & ol all & o|l| all o o ol o o

el € EI|EIIE|..]EI|lE|E|..lE||E|E E|I| E| € El| E| € I el € e

(@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@] (@) (@) (@) (@) (@] (@] (@] (@) (@] (@)

Ol O O|lO| O OO O OO O OO O O[O O @) Ol O O

Edgar Gabriel

MCA Component Frameworks

 Components divided into three categories
— Back-end to MPI API functions
— Run-time environment
— Infrastructure / management

 Rule of thumb:

— “If we’ll ever want more than one implementation, make it
a component”

MCA Component Types

« MPI types

P2P management
P2P transport
Collectives
Topologies

MPI-2 one-sided
MPI-2 10

Reduction Operations

m Edgar Gabriel

Run-time env. Types

— Out of band communication
— Process control

— Global data registry

Management types

— Memory pooling
— Memory caching
— Common

Component

Module

Q
S
O

O

Component / Module Lifecycle

Com

v

4 N\
Selection
& J
(N\
Initialization
& J

[c

heckpoint { Normal
restart usage

|

L

——

[Finalization }

T e

ar Gabriel

Component

— Open: per-process
Initialization

— Selection: per-scope
determine if want to use

— Close: per-process
finalization

Module

— Initialization: if component
selected

— Normal usage /
checkpoint

— Finalization: per-scope
cleanup

Point-to-Point

User application

e)
k J
f)
MPI Component Architecture (MCA)
. J
g L . e
PML BML BTL MPool RCache
(. AN RN 2, A
N NE a0 oo o &
o
EJ' o N E E m o
o2 o ol e [T =
| < f
d=
—J —J —J _/\2/ —

Edgar Gabriel

Pt-2-Pt Components

PML — P2P Management Layer

— Provides MPI Point-to-point
semantics

— Message Progression

— Request Completion and
Notification

Internal MPl messaging protocols
— Eager send
— Rendezvous

Support for various types of
interconnect

— Send/Recv
— RDMA
— Hybrids

Edgar Gabriel

BTL — Byte Transfer Layer

— Data mover
— Message Matching

— Responsible for own progress

(polling or async)

BML — BTL Management Layer
— Thin multiplexing layer over

BTL's

— Manages peer resource

discovery

Performance Results

« 3-D Finite Difference with four different implementations of the occurring
communication pattern evaluated:

— fcfs: first-come first-serve using non-blocking
communication and derived datatypes

— fcfs-pack: first-come first-serve using non-blocking
operations and pack/unpack

— overlap: first-come first-serve using non-blocking
operations, derived datatypes and overlapping
communication and computation

— ordered: using blocking Send/Recv operation with derived
datatypes

 Tests executed on
— cacau (HLRS): EM64T cluster using an InfiniBand and GEthernet
— phobos (ZIH): Opteron cluster using InfiniBand

» Three different MPI libraries tested:
— Open MPI v1.0.1

— Intel MPI1 1.0
— MVAPICH 1.2.

Performance Results (1)

Execution time for 200 iterations on 64 processes/ 32 nodes on phobos

Comparison of Open MPI and MVAPICH on Phobos
14
12 _L —
10] 1
o
&
o 3 | | |@128x128x128 MVAPICH2
E m 128x128x128 Open MPI
5 6 0 256x128x128 MVAPICH2
5 | | |0 256x128x128 Open MPI
4 - [|
2 1 | -
0
fcfs fcfs-pack ordered overlap
Edgar Gabriel

CSeUH

Performance Results (Il)

Execution time for 200 iterations on 16 processors / 16 nodes over IB

14

Comparison of Open MPI and Intel MPI on cacau

12

10 -

execution time [sec]

fcfs

fcfs-pack ordered owerlap

@ Open MPI 128x64x64
m Intel MPI 128x64x64
0O Open MPI 128x128x64
O Intel MPI 128x128x64

Edgar Gabriel

Performance Results (lI1)

Execution time for 200 iterations on 16 processors / 16 nodes over GE

Comparison of Open MPI and Intel MPI 16 on cacau
14
12 -
10
7}
3
° 8 @ Open MPI 128x64x64
E m Intel MP1 128x64x64
5 0 Open MPI 128x128x64
E ° O Intel MPI 128x128x64
4 .
2 .
0
fcfs fcfs-pack ordered overlap

Edgar Gabriel

L

Current status (I)

Current stable release: v1.0.2
Last week branched for v1.1
— Expected to be released May/June/July
— Tuned collective communication component
— One-sided communication component
— Data reliability

Supported operating systems
— Linux

— 0OS X (BSD)

— Solaris *

— AIX”
" Less frequently tested

Edgar Gabriel

Current status (I

e Supported network e Supported batch

Interconnects schedulers

— TCP — rsh/ ssh

— Shared memory — BProc (current)

— Myrinet — PBS / Torque
e GM, MX — SLURM

— Infiniband — BJS (LANL BProc
« mVAPI, OpenIB Clustermatic)

— Portals — Yod (Red Storm)

Currently ongoing work

Data reliability for point-to-point operations

Definition of new collective framework collv2

— Selection on a per-function bases (instead of per
component basis in v1)

Coordinated checkpoint-restart capabilities

ORTE v2
— Relevant for dynamic process management

m Edgar Gabriel

ADCL - Motivation (I)

Finite difference code using regular domain decomposition

— Data exchange at process boundaries required in every iteration

of the solver
— Typically implemented by a sequence of point-to-point operations

A AT
000000 0000000 00000
000000 0000000 00000
000000 0000000 OCO0OOOO
000000 0000000 00000
000000 0000000 000000
000000 0000000 000000
000000 0000000 OOOGOOO
000000 0000000 OOO0OOO
000000 0000000 000000
000000 0000000 OOO0OOO
co0o0o00 00000 co0o0o0O0
coo0o0o0 coo0o0o0 coo0o0o0
000000 0000000 OOOOOO
000000 0000000 OOOOOO
000000 0000000 000000
000000 0000000 OCOOOOO
000000 0000000 OOOGOOO
000000 0000000 000000
000000 0000000 OCOOOOO
000000 0000000 OOOGOGOO
000000 0000000 OOOGOOO
000000 0000000 OCOO0OOO
coo0o00 0co0o0o00 coo0o00
coo0o00 co0o0o00 co0o0o00
000000 0000000 OOOOOO
000000 0000000 OOOOGOO
000000 0000000 0OOOOOO
000000 0000000 OOOOOO
000000 0000000 OOOGOOO
000000 0000000 OOOCOOO
000000 0000000 OOOGOGOGEO
000000 0000000 OOGOGOGOGO
000000 0000000 OOOGOOGO
000000 0000000 OOO0OOCO

/{ N\

L

@

Edgar Gabriel

Motivation (lI1)

Execution time for 200 iterations on 32 processes/processors

30
25
)
o 20 W fcfs
()
E O fcfs-pack
2 15
o O ordered
>
(&)
% 10 O W overlap
5
o W W
128x128x64 IB 128x128x128 IB 128x128x64 TCP 128x128x128 TCP
!
Edgar Gabriel |CS (& UH

How to implement the required
communication pattern?

 Dependence on platform

— Some functionality only supported (efficiently) on
certain/platforms or with certain network interconnects

 Dependence on MPI library
— Does the MPI library support all available methods
— Efficiency in overlapping communication and computation
— Quality of the support for user defined datatypes
 Dependence on application
— Problem size
— Ratio of communication to computation

 Problem: How can an (average) user understand the
myriad of implementation options and their impact on the
performance of the application?

 (Honest) Answer: no way

— Abstract interfaces for application level communication
operations required — ADCL

— Statistical tools required to detect correlations between
parameters and application performance

ADCL - Adaptive Data and
Communication Library

e Goals:

— Provide abstract interfaces for often occurring application
level communication patterns

» Collective operations

* Not-covered by MPI specification

— Provide a wide variety of implementation possibilities and
decision routines which choose the fastest available
Implementation (at runtime)

* Not replacing MPI, but add-on functionality
— Uses many features of MPI

ADCL — components (I)

1. Static (parallel) configure step
— Exclude methods not supported by the MPI library
— Determine characteristics of the MPI library, e.g.
e MPI_Sendvs. MPI _Isend vs. MP1_Putvs. MP1_Get
 Effectof MPI_Alloc_mem
« Derived Datatypes vs. MP1 _Pack/MP1_Unpack

« Efficiency of overlapping communication and computation

— Characteristics stored as attributes of the library

ADCL — components (Il)

2. ADCL Methods and Runtime library

— Collection of all available implementations for a certain
communication operation

— Runtime decision routines

e Matching of requirements of an implementation to the
attributes set by the parallel configure step

 Testing at runtime
— Monitoring of the performance

« Used for initiating re-evaluation of a decision
3. Historic learning

— Input file
— Usage of performance skeletons (cooperation with Jaspal

Subhlok)
m Edgar Gabriel I@m

Classification of implementations

Data transfer primitives

— Blocking point-to-point operations

— Non-blocking point-to-point operations
— Persistent request operations

— One-sided operations

— Collective operations

2. Mapping of the communication pattern to data transfer operations

3.

L

— Direct-transfer vs. Variable-transfer

— Single-block vs. dual-block implementations
Handling of non-contiguous messages

— Sending each element separately

— Pack/unpack

— Derived datatypes

Edgar Gabriel

ADCL — code sample

/* describe neighborhood relations using Topology
functions of MPI */
MP1 _Cart create (comm, n, dims[n], period, reorder,
&cart_comm);

/* Register a data structure for communication operations*/
ADCL_Register_dense matrix (matrix, n, matrix _dims[n],
k, submatrix_dims[k],
num_ghostcells, distance,
cart_comm, &adcl request);

/* Start a blocking communication for the registered matrix
on the provided communicator */

ADCL_Start (&adcl _request); Zé:::;77
m Edgar Gabriel m

Current status of ADCL

_ . Southeast Texas
« Application driven Jul 7. 2000 8 AM
— CMAQ: air-quality code
(Daewon Byun)

— Multi-scale blood-flow
simulation (Marc Garbey)

m Edgar Gabriel

Avalilable implementations for 3-D
neighborhood communication

Data transfer | Communication structure Handling of non-

primitive cont. messages
ordered Blocking Direct-transfer, single-block Der. datatypes
fcfs Non-blocking | Direct-transfer, single-block Der. datatypes
fcfs-pack Non-blocking | Direct-transfer, single-block Pack/Unpack
overlap Non-blocking | Direct-transfer, dual-block Der. datatypes
alltoallw Collective Direct-transfer, single-block Der. datatypes
get-fence One-sided Direct-transfer, dual-block Der. datatypes
put-fence One-sided Direct-transfer, dual-block Der. datatypes
get-start One-sided Direct-transfer, dual-block Der. datatypes
put-start One-sided Direct-transfer, dual-block Der. datatypes
topo Non-blocking | Variable-transfer, single-block | Der. datatypes
topo-overlap | Non-blocking | Variable-transfer, dual-block Der. datatypes
“ Edgar Gabriel Uﬁ@

Summary

« Open MPI

— a component based, flexible implementation of the MPI-1
and MPI-2 specifications

— Resolves some of the issues seen on today’s cluster with
other MPI libraries

« ADCL:

— An adaptive communication library for abstracting often
occurring application level communication operations

— Simplifies the development of portable and performant
code for scientific computing

