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Abstract

There is a variety of tools to measure the performance
of Linux systems and the applications running on them.
However, the resulting performance data is often pre-
sented in plain text format or only with a very basic
user interface. For large systems with many cores and
concurrent threads, it is increasingly difficult to present
the data in a clear way for analysis. Moreover, cer-
tain performance analysis and debugging tasks require
the use of a high-resolution time-line based approach,
again entailing data visualization challenges. Tools in
the area of High Performance Computing (HPC) have
long been able to scale to hundreds or thousands of par-
allel threads and help finding performance anomalies.
We therefore present a solution to gather performance
data using Linux performance monitoring interfaces. A
combination of sampling and careful instrumentation al-
lows us to obtain detailed performance traces with man-
ageable overhead. We then convert the resulting out-
put to the Open Trace Format (OTF) to bridge the gap
between the recording infrastructure and HPC analysis
tools. We explore ways to visualize the data by using the
graphical tool Vampir. The combination of established
Linux and HPC tools allows us to create an interface for
easy navigation through time-ordered performance data
grouped by thread or CPU and to help users find oppor-
tunities for performance optimizations.

1 Introduction and Motivation

GNU/Linux has become one of the most widely used
operating systems, ranging from mobile devices, over
laptop, desktop, and server systems to large high-
performance computing (HPC) installations. Perfor-
mance is a crucial topic on all these platforms, e.g.,
for extending battery life in mobile devices or to ensure

maximum ROI of servers in production environments.
However, performance tuning is still a complex task that
often requires specialized tools to gain insight into the
behavior of applications. Today there is only a small
number of tools available to developers to understand
the run-time performance characteristics of their codes,
both on the kernel and the user land side. Moreover, the
increasing parallelism of modern multi- and many-core
processors creates an additional challenge since scala-
bility is usually not a major focus of standard perfor-
mance analysis tools. In contrast, scalability of appli-
cations and performance analysis tools has long been a
topic in the High Performance Computing (HPC) com-
munity. Nowadays, 96.4 % of the 500 fastest HPC in-
stallations run a Linux OS, as compared to 39.6 % in
20031. Thus, the HPC community could benefit from a
better integration of Linux specific performance moni-
toring interfaces in their tools as these are currently tar-
geting parallel programs and rely on instrumenting calls
to parallelization libraries such as the Message Pass-
ing Interface (MPI) and OpenMP. On the other hand,
the Linux community could benefit from more scalable
tools. We are therefore convinced that the topic of per-
formance analysis should be mutually solved by bring-
ing together the expertise of both communities.

In this paper, we present an approach towards
scalable performance analysis for Linux using the
perf infrastructure, which has been introduced with
Linux 2.6.31 [8] and has undergone intensive devel-
opment since then. This infrastructure allows users to
access hardware performance counters, kernel-specific
events, and information about the state of running ap-
plications. Additionally, we present a new visualization
method for ftrace-based kernel instrumentation.

1Based on November 2003 and November 2013 statistics on
http://top500.org
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Table 1: Common Linux Performance Analysis Interfaces and Tools

Measurement Type Kernel Interface Common Userspace Tools and Libraries

Instrumentation

ptrace gdb, strace, ltrace
ftrace trace-cmd, kernelshark, ktap

kernel tracepoints LTTng, SystemTap, ktap, perf userspace tools
dynamic probes SystemTap, ktap, perf userspace tools

Sampling
perf events perf userspace tools, PAPI

OProfile (kernel module) OProfile daemon and tools

The remainder of this paper is structured as follows:
Section 2 presents an overview of existing Linux per-
formance analysis tools. Section 3 outlines the process
of acquiring and processing performance data from the
perf and ftrace infrastructures followed by the presenta-
tion of different use-cases in Section 4.

2 Linux Performance Monitoring Interfaces
and Established Tools

Several interfaces are available in the Linux kernel to
enable the monitoring of processes and the kernel itself.
Based on these interfaces, well-established userspace
tools and libraries are available to developers for var-
ious monitoring tasks (see Table 1). The ptrace [15]
interface can be used to attach to processes but is not
suitable for gaining information about the performance
impact of kernel functions. ftrace [7] is a built-in instru-
mentation feature of the Linux kernel that enables kernel
function tracing. It uses the -pg option of gcc to call
a special function from every function in a kernel call.
This special function usually executes NOPs. An API,
which is located in the Debugfs, can be used to replace
the NOPs with a tracing function. trace-cmd [25]
is a command line tool that provides comfortable ac-
cess to the ftrace functionality. KernelShark [26] is a
GUI for trace-cmd, which is able to display trace in-
formation about calls within the Linux kernel based on
ftrace events. This allows users to understand the sys-
tem behavior, e.g., which processes trigger kernel func-
tions and how tasks are scheduled. However, the Ker-
nelShark GUI is not scalable to large numbers of CPU
cores and does not provide integration of sampling data,
e.g., to present context information about application
call-paths. Nevertheless, support for ftrace is currently
being merged into the perf userspace tools [16]. Ker-
nel tracepoints [3] are instrumentation points in differ-
ent kernel modules that provide event-specific informa-
tion, e.g., which process is scheduled to which CPU for

a scheduling event or what hints have been used when
allocating pages. kprobes are dynamic tracepoints that
can be added to the kernel at run-time [12] by using
the perf probe command. Such probes can also be
inserted in userspace programs and libraries (uprobes).
The perf_event infrastructure can handle kprobes and
uprobes as well as tracepoint events. This allows the
perf userspace tools to record the occurrences of these
events and to integrate them into traces. The Linux Trace
Toolkit next generation (LTTng) [10,11] is a tracing tool
that allows users to measure and analyze user space and
kernel space and is scalable to large core counts. It
writes traces in the Common Trace Format which is sup-
ported by several analysis tools. However, these tools
do not scale well to traces with large event counts. Sys-
temTap [28] provides a scripting interface to access and
react on kernel probes and ftrace points. Even though it
is possible to write a generic (kernel) tracing tool with
stap scripts, it is not intended for such a purpose. ktap
is similar to SystemTap with the focus on kernel trac-
ing. It supports tracepoints, dynamic probes, ftrace, and
others.

In addition to the instrumentation infrastructure support
in the kernel, measurement points can also be triggered
by sampling. The perf_event infrastructure provides ac-
cess to hardware-based sampling that is implemented
on x86 processors with performance monitoring units
(PMUs) that trigger APIC interrupts [5, 14]. On such
an interrupt, the call-graph can be captured and writ-
ten to a trace, which is usually done with the perf
record command-line tool but can also be achieved
with low-level access to a memory-mapped buffer that
is shared with the kernel. In a post-mortem step, tools
like perf script and perf report use debug-
ging symbols to map the resulting events in a trace
file recorded by perf record to function names.
PAPI [6, 23] is the de facto standard library for read-
ing performance counter information and is supported
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by most HPC tools. On current Linux systems, PAPI
is using the perf_event interface via the libpfm4 library.
In addition to performance counter access, PAPI is also
able to use this interface for sampling purposes. The
OProfile kernel module [19] is updated regularly to sup-
port new processor architectures. It provides access to
hardware PMUs that can be used for sampling, e.g., by
the OProfile daemon [20].

However, none of the Linux performance analysis tools
is capable of processing very large amounts of trace
data and none feature scalable visualization interfaces.
Scalable HPC performance analysis tools such as Vam-
pir [24], Score-P [18], HPCToolkit [1], and TAU [27],
on the other hand, usually lack the close integration
with the Linux kernel’s performance and debugging in-
terfaces.

3 Performance Data Acquisition and Conver-
sion

In this section, we discuss our approach to obtaining
performance data using standard tools and interfaces
and how we further process the data to make it available
to scalable analysis tools.

3.1 Data Acquisition with perf and ftrace

We use perf record to capture hardware-counter-
based samples and selected tracepoints. In more detail,
we use the following event sources:
cpu-cycles

This event is used as a sampling timer. Unlike typi-
cal alerts or timers, the cpu-cycles counter does not
increase when the CPU is idle. Information about
idling CPUs or tasks is not crucial for performance
analysis and a lower interrupt rate in such scenarios
minimizes the sampling overhead.

sched_process_{fork|exec|exit}
These tracepoint events are used to track the cre-
ation and termination of processes.

sched_switch
This tracepoint event is used to track processes
on the CPUs. It provides knowledge about when
which task was scheduled onto which CPU. The
state of the task that is scheduled away is associated
to the event in order to distinguish between volun-
tary sleep (state S), un-interruptible sleep (state D,
usually I/O), or preemption (state R)2.

2cf. man top

instructions|cache-misses|...
Other performance counters can be included in the
timeline to get a better understanding of the effi-
ciency of the running code. For example, the in-
struction counter allows us to determine the in-
struction per cycle (IPC) value for tasks and CPUs
and adding cache-misses provides insights into the
memory usage.

As an alternative to sampling, instrumentation can pro-
vide fine-grained information regarding the order and
context of function calls. For debugging purposes, sam-
pling is not a viable option. Thus, we use the kernel
tracing infrastructure ftrace to analyze kernel internal
behavior. One alternative would be a combination of
trace-cmd and KernelShark. However, KernelShark is
limited in terms of scalability and visualization of im-
portant information. Instead of trace-cmd we use a
shell script to start and stop the kernel monitoring in-
frastructure ftrace. The script allows us to specify the
size of the internal buffer for events and filters that can
be passed to ftrace in the respective debug fs files.
To create the trace, we enable the function_graph tracer
and set the options to display overruns, the cpu, the pro-
cess, the duration, and the absolute time. The script then
starts the recording by enabling ftrace and stops it when
the recording time expires.

3.2 Conversion to Scalable Data Formats

The perf record tool and its underlying file format
are designed to induce only minimal overhead during
measurement. It therefore simply dumps data from the
kernel buffer directly into a single file without any dis-
tinction between process IDs or CPUs. This file can
be used in a follow-up step to create a profile based on
the recorded trace data using perf report. External
tools can be used with perf script to analyze the
trace data. However, the simple file structure resulting
from the low-overhead recording process has negative
side effects on the scalability of the data format. A par-
allel parsing of a single file is impeded by the variable
length of single trace entries and the mixture of manage-
ment information (e.g., task creation and termination)
with performance event information from sampling.
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Figure 1: Vampir visualization of a trace of the HPC application WRF, including the Master Timeline showing
the parallel process activity (different function calls in different colors, MPI messages as black lines aggregated in
bursts), the Performance Radar depicting performance metrics such as hardware counter readings, and the Process
Timeline with the call-stack of one process. The right side contains the Function Summary that provides a function
profile and a Communication Matrix depicting a profile about the communication between the parallel processes.
The trace is available for download at http://vampir.eu.

3.2.1 Scalable Trace Formats

Scalable performance analysis tools commonly used by
the HPC community make use of scalable formats such
as OTF [17], OTF2 [9], CTF [4], and HPCTRACE [1].
The Open Trace Format (OTF) was designed for use
with VampirTrace [24] to allow for parallel reading and
writing of trace files. The format is built around the con-
cept of event streams, which can hold trace information
of one or more parallel execution entities (processes,
threads, GPU streams). Event properties, such as names
of processes and functions as well as grouping informa-
tion, can be defined locally for one stream or globally for
all streams. This separation of different event streams as
well as meta-data is important for efficiently reading and
writing event traces in parallel, which has already been
demonstrated on a massively parallel scale with more
than 200,000 event streams [13]. The data itself is en-
coded in ASCII format and can be compressed transpar-
ently. The successor of this trace format is OTF2 [9].
It has a similar structure but allows for more efficient
(binary) encoding and processing. OTF2 is part of the
Score-P performance measurement environment [18].

We use Vampir for the visualization of the generated
OTF files. Figure 1 shows the visualization of a trace
of a typical MPI application recorded using Vampir-
Trace. Vampir is designed to display the temporal rela-
tion between parallel processes as well as the behavior
of individual processes, to present performance metrics,
e.g., hardware counters, MPI communication and syn-
chronization events. Additionally, Vampir derives pro-
filing information from the trace, including a function
summary, a communication matrix, and I/O statistics.
Starting from an overall view on the trace data, Vam-
pir enables the user to interactively browse through the
trace data to find performance anomalies. By providing
the capability of filtering the data that is contained in
the trace, Vampir helps users to cope with the possibly
large amounts of trace data that has been recorded by
the measurement infrastructure. Moreover, it provides a
client-server based infrastructure using a parallel analy-
sis server that can run on multiple nodes to interactively
browse through the large amounts of trace data.

In general, the trace files can be written and read through
an open source library to enable users to analyze the
traces with custom tools. VampirTrace and OTF are
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(a) Conversion of perf.data recordings
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(b) Conversion of ftrace recordings

Figure 2: Toolchains for recording and converting performance data of Linux performance monitoring tools.

bundled with command-line tools for analyzing and pro-
cessing OTF traces. Since the focus of these tools has
been instrumentation based recording, there is no ded-
icated call-path sample record type in OTF or any of
the other formats supported by Vampir so far. There-
fore, the call-path sample information from perf.data is
mapped to enter- and leave-function events typically ob-
tained through instrumentation. Introducing support for
sampled events into the full tool chain is currently work
in progress.

3.2.2 Conversion of Trace Data

To convert the perf.data information into a scalable file
format, we use the python interface provided by perf
script and the python-bindings of OTF. Additionally,
we patched perf script to pass dynamic symbol object
information to the conversion script3. Based on the PID
and CPU information within every sample, we are able
to create two different traces: a task-centric and a CPU-
centric trace. The conversion process depicted in Fig-
ure 2a is still sequential due to the limitations of the
perf.data file format. For a CPU-centric view, this limi-
tation could be overcome with multiple perf data files –
one per CPU – which would be feasible with the existing
tool infrastructure. However, task migration activities
and their event presentation do pose a major challenge
for a task-centric view since information on individual
tasks would be scattered among multiple data files.

Note that perf.data information that is gathered in a task-
specific context does not provide information about the
CPU that issued a specific event. Thus, we can only

3See https://lkml.org/lkml/2014/2/18/57

create task-centric traces in this case. Information that
is gathered in a CPU-specific context allows us to create
both CPU-centric and task-centric traces.

Processing information provided by ftrace is straight-
forward as exact enter and exit events are captured.
Thus, we use the OTF python bindings to write events
whenever a function is entered or exited. We concur-
rently generate two traces – a CPU-centric trace and a
process-centric trace. If a function has been filtered out
or the process has been unscheduled in between, enter
events are written to match the current stack depth. One
challenge for the trace generation is the timer resolu-
tion of ftrace events, which is currently in microsec-
onds. This leads to a lower temporal accuracy within
the traces as function call timer resolution is nanosec-
onds. The difference of these timer sources adds un-
certainty. However, the order and context of the calls
stay correct, thereby allowing enthusiasts to understand
causal relations of function calls within the kernel. The
full toolchain overview is depicted in Figure 2b.

4 Examples and Results

4.1 Analyzing Parallel Scientific Applications

This example demonstrates the scalability of our ap-
proach. We use the perf-based tool infrastructure pre-
sented in Section 3 to analyze a hybrid parallel applica-
tion. The target application is bt-mz of the NAS parallel
benchmark suite [2] (Class D, 32 MPI processes with 8
OpenMP threads each).

We run and post-process this workload on a NUMA
shared memory system with a total of 512 cores and
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(a) All processes, two iterations with cache-misses per sec-
ond

(b) Two processes, close-up inside one iteration which in-
structions per second

Figure 3: Trace of a parallel application using OpenMP and MPI. Program execution is colored green/yellow. Thread
synchronization via OpenMP is colored blue. Process synchronization via MPI is colored red.

8 TiB main memory4. To generate the trace, we only use
features that are available for unprivileged users in stan-
dard Linux environments. We utilize perf record
with default settings for the cycles, instructions, and
cache-misses hardware events and enabled call-graph
tracing.

Additional cores are reserved for perf to reduce the per-
turbation of the application due to the measurement.
The recording operates at the limit of the system I/O ca-
pacity, so that a number of chunks are lost. According to
internal measurements of the application, its execution
time increases from 70.4 s to 95.8 s when comparing a
regular and a measured execution. Considering the scale
of the application and three hardware counters with a
relatively high recording frequency, the overhead is ac-
ceptable. The resulting perf.data file contains 166 mil-
lion events in 16 GiB. After the conversion process, the
resulting compressed OTF trace has a size of 2.1 GiB.

4SGI UV2000 with 64 socket Intel Sandy Bridge E5-
4650L @ 2.6 GHz

Figure 3a visualizes an excerpt of approx. 1 second of
the application execution in Vampir. For a more con-
cise visualization, we filter the shepherd threads of the
OpenMP run-time library as well as the mpirun and
helper processes. These tasks monitor the the OpenMP
threads and the MPI environment for failures. They are
recorded along the other tasks but do not show any reg-
ular activity during the execution. The figure contains
three summaries of function activity: the fraction of
time spent in each dso, the time share of functions in the
binary, and the time share of functions in the OpenMP
library. It also contains a timeline with the current func-
tion and a heat-map of cache-misses for all processes
respectively. The visualization contains two iterations
of the application execution. After each iteration, a
global synchronization (red) between all MPI ranks is
performed. The computation threads also synchronize
(light blue) with their respective master threads. At the
very beginning of each iteration, there is a short phase
with a high cache miss rate after which the miss rate
drops. Towards the end of each iteration, the cache miss
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rate also increases and so does the run-time of the re-
peated x/y/z_solve functions. A closer look inside
an iteration is shown in Figure 3b, which is focused on
two processes (16 compute threads total). Within each
process, the x/y/z_solve and a few other functions
are repeatedly executed with OpenMP synchronizations
in between. Note that there is some sampling noise
of other function calls within the x/y/z_solve that
cannot be filtered due to imperfect call-path informa-
tion. The performance radar shows that the functions
x/y/z_solve have different typical instruction rates.
Two threads (82536 and 82504) show regular drops in
the instruction rate and similar drops in the cycles rate
(not shown in the picture). This is likely due to them
being preempted in favor of another task. As a con-
sequence, the synchronization slows down the entire
thread groups. Moreover, there is a regular diagonal pat-
tern of short drops in the instruction rate. This is likely a
result of OS-noise similar to the effects that we analyze
in Section 4.4.

4.2 Analyzing the Behavior of a Web Server

In addition to analyzing one (parallel) application, perf
can also be used for system analyses. To demon-
strate these capabilities, we ran perf as a privileged user
on a virtual machine running a private ownCloud5 in-
stallation using the Apache2 webserver and a MySQL
database. The virtual machine is hosted on a VMware
installation and is provided with 2 cores and 4 GB of
memory. The recording was done using the -a flag to
enable system-wide recording in addition to call-graph
sampling. The visualization of the resulting trace is
shown in Figure 4. The recorded workload consisted of
six WebDAV clients downloading 135 image files with
a total size of 500 MB per client.

The parallel access of the clients is handled through the
Apache2 mpm_prefork module, which maintains a
pool of server processes and distributes requests to these
workers. This is meant to ensure scalable request han-
dling with a high level of separation between the work-
ers and is recommended for PHP applications. The pro-
cess pool can be configured with a minimum and max-
imum number of server processes based on the number
of expected clients. However, the high load from the
clients downloading files in parallel in conjunction with
the small number of available cores leads to an overload

5See http://owncloud.org/

that manifests itself through the parallel server processes
spending much time in the idle(R) state in which pro-
cesses are run-able and represented in the kernel’s task
queue but not actually running, e.g., they are not wait-
ing for I/O operations to complete. These involuntary
context switches are distinctive for overload situations
and are also reflected by the high number of context
switches, as can be seen in the display in the middle
of the figure.

The MySQL database is involved in the processing as it
stores information about the files and directories stored
on the server. Every web-server instance queries the
database multiple times for each client request. Since
the run-times of the database threads between volun-
tary context switches (waiting for requests) are rela-
tively short, the threads are not subject to involuntary
switches.

In addition to the run-time behavior of the pro-
cesses and their scheduling, we have also captured
information about the network communication of the
server. This is depicted in the lower three dis-
plays of Figure 4. To accomplish this, two addi-
tional events have been selected during the recording:
net:net_dev_xmit reflecting the size of the socket
buffers handed to the network device for transmission to
clients and net:netif_receive_skb for received
socket buffers. Note that this information does not nec-
essarily reflect the exact data rate on the network but can
provide a good estimate of the network load and how it
can be attributed to different processes.

4.3 Analyzing Parallel Make Jobs

In addition to analyzing the performance of server work-
loads, perf can also be used to record the behavior of
desktop machines. As an example, we use the compi-
lation process of the perf project using the GCC 4.8.0
compiler. As in the previous example, perf has been
run as a privileged user in order to capture scheduling
and migration events in addition to the cycles and
page-faults counter. Figure 5 shows the compila-
tion process in four different configurations, from a se-
rial build to a highly parallel build on a four core desktop
machine (Intel Core i7-2620M). The serial compilation
is depicted in Figure 5a and reveals that one compila-
tion step requires significantly more time to finish than
all other steps. Figure 5b depicts a parallel make to
compensate for the wait time (and to better utilize the
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Figure 4: Vampir trace visualization of a system running an Apache2 web sever and a MySQL database. Some
processes filtered. The top display shows the thread-centric view followed by the CPU-centric view and the num-
ber of context switches per core. The lower part of the figure contains the average socket buffer size transmitted
(net_dev_xmit) per time for core 0 and for one of the Apache2 processes as well as the average socket buffer
size received per time by that process. The executed code parts are colored as follows: MySQL in purple, PHP5 in
green, and libc in blue. For the cores, the function native_safe_halt is colored orange and is used on Core 1
when it is not needed toward the end. The idle(R) state is colored red.
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(a) serial make (b) make -j4

(c) make -j (d) make -j4 (close-up)

Figure 5: System traces of a desktop machine compiling perf (as shipped with Linux 3.8.0) in different configura-
tions: (a) serial make; (b) with four parallel make jobs (using -j4); (c) with unlimited number of make jobs (using
-j); and (d) a close-up view of the trace shown in (b) showing six make jobs. Figures (a) – (c) each show both the
process-centric view (top) and the cpu-centric view (bottom) of the function execution in addition to a display of
the page faults that occurred during execution. Figure (d) also shows a summary of all executed processes during
the depicted time-frame. The colors are as follows: cc1 depicted in purple, idle(R) in blue, as in dark brown,
libc in light brown, and kernel symbols in light gray. All figures only contain the compilation and linking steps,
the preceding (sequential) configuration steps are left out intentionally.

9

http://www.linuxsymposium.org/2014/linux-symposium-2014-proceedings.pdf


This paper has been presented at the Ottawa Linux Symposium 2014 and was initially published at
http://www.linuxsymposium.org/2014/linux-symposium-2014-proceedings.pdf

0 20 40 60

make -j

make -j4

make

33.31

30.6

54.96

time (s)

Figure 6: Time required for building the perf project
using different configurations for parallel make (1, 4,
unlimited).

available four CPU cores). It shows that the compila-
tion proceeds even though the long running compilation
step is not finished yet. Only at the very end, the linking
step has to be deferred until all make jobs are finished.
A subset of the parallel make steps is depicted in Fig-
ure 5d to visualize the process structure (gcc spawns
the processes cc and as and waits for their execution
to finish) and the actual parallel execution. The figure
also shows the executed applications and library func-
tions, e.g., cc1, gcc, as, and kernel symbols.

Another attempt to speed up the compilation (and to
compensate for possible I/O idle times) is to spawn even
more processes. This can be done using make -j
without specifying the number of parallel jobs. In that
case, make launches as many jobs as possible with
respect to compilation dependencies. This can lead
to heavy over-subscription even on multi-core systems,
possibly causing a large number of context switches
and other performance problems. The behavior of a
highly parallel make is depicted in Figure 5c, which also
shows an increased number of page faults as a conse-
quence of the high number of context switches. Overall,
compiling the perf project with make -j4 is slightly
faster (30.6 s) compared to using make -j (33.31 s),
as shown in Figure 6.

4.4 Analyzing OS Behaviour with ftrace

Figure 7a shows a trace of an idle dual socket system
running Ubuntu Server 13.10. With eight cores per pro-
cessor and HyperThreading active, 32 logical CPUs are
available. We filtered out the idle functions that use
up to 99.95 % of the total CPU time that is spent in
the kernel. The largest remaining contributors are the
irqbalancer, the RCU scheduler [21, 22], the rsyslog
daemon, some kernel worker tasks, and the NTP dae-
mon. We also see that there are two different kinds of

per CPU threads that issue work periodically: watch-
dog threads and kernel worker threads that are used by
the ondemand governor. Watchdog threads start their
work every 4 s (displayed as vertical lines). The on-
demand frequency governor is activated every 16 s on
most CPUs (transversal lines). kworker-4 is the kernel
worker thread of CPU 0. It uses siginificantly more time
compared to other kernel workers since it is periodically
activated by ksoftirq, which is running on CPU 0 and
is handling IPMI messages at a regular interval of 1 s.
CPU 22 also executes work every second triggered by
the NTP daemon.

The RCU scheduler is mainly triggered by irqbalance
and the rsyslog daemon. Zooming into the trace, we see
that these tasks use the __call_rcu function. Shortly
afterwards, the RCU scheduler starts and handles the
grace periods of the RCU data. In this example, the
RCU scheduler task runs on different processor cores
but always on the same NUMA node as the process that
issued RCU calls. Figure 7b depicts this behavior for
the rsyslogd activity. After the RCU scheduler is mi-
grated to another CPU, a kernel worker thread is sched-
uled. The kernel worker thread handles the ondemand
frequency governor timer (od_dbs_timer, not depicted).

5 Conclusion and Future Work

This paper presents a new combined workflow for
recording, managing, and visualizing performance data
on Linux systems. We rely on established performance
monitoring infrastructures and tools, making our ap-
proach applicable in a wide range of scenarios. Call-
path sampling works on standard production systems
and does not require root access or special permissions.
Having additional permissions to record special trace-
point events can further increase the level of detail. By
using already available Linux tools that require no re-
compilation or re-linking, the entry barrier for perfor-
mance analysis had beeen lowered significantly. With
sampling, the overhead can be controlled by selecting
an appropriate event frequency. For a visual analysis,
we leverage the Vampir visualization tool that originates
from the HPC community. This enables a scalable and
flexible visualization of trace data that contains infor-
mation from a large number of processes, running over
a long time, and including a high level of detail.

We have demonstrated the versatility of our approach
with several use cases, including an analysis of scien-
tific applications running on large production systems,
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(a) Overview of kernel activity. Regular patterns: regular vertical lines every 4 seconds are watchdog threads; transversal lines every
16 seconds represent ondemand frequency governor activity.

(b) Zoomed into rsyslogd activity, which triggers RCU scheduler activity. rsyslogd calls to RCU objects are colored red. rsyslogd
runs on CPU 6. The CPU location of the RCU scheduler changes over time across unoccupied cores of one NUMA package. The
same NUMA package is used by rsyslogd and rcuos/6. The light blue activity (not depicted in timeline, but in function statistics)
represents the rcuos/6 task that offloads RCU callbacks for CPU 6.

Figure 7: Kernel activity of an idle dual socket Intel Sandy Bridge node. Idle functions have been filtered out.

the activity on a highly utilized web and database server,
as well as investigating operating system noise. Differ-
ent performance aspects can be covered: Hardware per-
formance counters, call-path samples, process and task
management, library calls, and system calls provide a
holistic view for post-mortem performance analysis, fo-
cussing either on the entire system or on a specific ap-
plication. Given the pervasiveness of Linux, even more
use cases are possible, for instance optimizing energy
usage on mobile systems.

Our future work will focus on some remaining scalabil-
ity issues. The recording process of perf record – where
only one file is written – should be reconsidered as the
number of CPUs will continue to increase. The con-
version process to OTF should be re-implemented as it

is currently single threaded. We provide kernel patches
that add missing functionality to the existing tools rather
than using the perf_event_open system call di-
rectly, as the latter would result in the re-implementation
of several perf userspace tool features. Additionally, we
submitted bug-fixes, one of which was accepted into
the main-line kernel. Furthermore, we plan to inte-
grate measurements on multiple nodes to generate a sin-
gle sampling-based trace from a distributed application.
This will allow us to study interactions between pro-
cesses on different systems as in client-server scenarios
and massively parallel applications. Moreover, we plan
to switch to OTF2 as the successor of the OTF data for-
mat. OTF2 will include support for a sampling data type
that will reduce the trace size and speed up the conver-
sion process.
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