
VampirTrace

Plugin Counter Manual

TU Dresden
Center for Information Services and
High Performance Computing (ZIH)
01062 Dresden
Germany

http://www.tu-dresden.de/zih
http://www.tu-dresden.de/zih/vampirtrace

Contact: vampirsupport@zih.tu-dresden.de

ii

http://www.tu-dresden.de/zih
http://www.tu-dresden.de/zih/vampirtrace
mailto:vampirsupport@zih.tu-dresden.de

Contents

Contents

1 General Information 1
1.1 Audience . 1
1.2 Installing a Plugin Counter . 1
1.3 Information about Plugin Counters 2
1.4 Enabling a Plugin Counter . 2

2 Implementing a new Plugin 3
2.1 General Functions . 3

2.1.1 Mandatory functions . 3
2.1.2 Mandatory variables . 5
2.1.3 Optional functions . 6

2.2 Types of plugins and functions per type 7
2.2.1 Synchronous plugins . 7
2.2.2 Asynchronous events . 8

2.3 Order of function calling . 10

3 Building a plugin 13

4 Challenges 15
4.1 Task Availability . 15
4.2 Limited Memory for Callback Plugins 15
4.3 Locking Code Sections Within a Plugin 15

5 Example 17

This documentation describes the usage of plugin counters for VampirTrace. It
describes the general idea of these plugins as well as how to enable them or to
implement a new one.

iii

1 General Information

1 General Information

Plugin counters are an easy way to extend the functionality of VampirTrace to
your needs. They allow to define additional counters as external library, which
is then loaded when tracing your application. So there is no need to recompile
VampirTrace and neither to instrument your application manually with VT USER
counters.

In the following, the word process describes a task within the operating system
that consists of a number of threads (at least one) which share some process
resources. A thread is a smaller unit of processing and therefor much more
light weight then a process. Threads within a process have shared (e.g. heap
memory) and private resources (e.g. stack memory). The implementation of
threads and processes is highly platform dependend.

1.1 Audience

The target audience of this feature are people who want to trace:

• system behaviour, that cannot be related to a specific thread or process.

• repeatingly the same metric, which is not specified in another feature of
VampirTrace (Consider using PAPI, it’s much faster and more comfortable
then writing this on your own)

• a specific metric, but are too scared of the VampirTrace source (which is
open-source btw.)

Cases when you should use something else are:

• if additional overhead is inacceptable for you.

• if you only trace ONE program. You should use the VT USER related func-
tions and instrument your code manually.

1.2 Installing a Plugin Counter

Plugin counters are provided as shared libraries. To use them, they should
be placed in a directory which is part of the LD LIBRARY PATH (like /lib or
/usr/lib).

1

1.3 Information about Plugin Counters

1.3 Information about Plugin Counters

If the developer of a plugin did his job, there should be a README on how to
compile it, install it, use it, and what events the plugin supports.

1.4 Enabling a Plugin Counter

To enable a plugin, set the environment variable VT PLUGIN CNTR METRICS.
As an example, if you have a library named libKswEvents.so, with the event
page faults, set it with

export VT_PLUGIN_CNTR_METRICS=KswEvents_page_faults

Multiple plugins and counters can be selected by separating them with :’s.

2

2 Implementing a new Plugin

2 Implementing a new Plugin
To define a new plugin include vt plugin cntr.h and implement the function
get info().

2.1 General Functions

Some functions are mandatory and have to be implemented for every plugin,
others are optional and some have to be implemented for special types of plug-
ins.

2.1.1 Mandatory functions

init

The initializing function should check, whether counting of this plugin is generally
available for the current system, whether the user has the right to count, whether
an external database is available, and so on. Also it should initialize most of the
data structures used from now on.

int32_t init(void);
Return: Whether the plugin could be initialized

correctly (0) or not (!= 0)

Note: On VampirTrace Version 5.10 (VT PLUGIN CNTR VERSION 1), this func-
tion is called once per process. Even on processes where the event might not
be traced!

get event info

Plugins may provide the functionality of wildcards, so you might have multiple
events for one event string containing such a wildcard.
Example: The user sets VT PLUGIN CNTR METRICS=myPlugin ∗, the devel-
oper of the myPlugin might want to expand the passed string “∗” to “real” coun-
ters like “counter 1” and “counter 2”. This should be done in this function.
The returned list should end with an element whose name is NULL, for all other
elements, the name and the cntr property are mandatory, the unit is op-
tional and might be NULL.

3

2.1 General Functions

The cntr property define informations about the given metric. To set them
combine the definitions of a data type:

VT_PLUGIN_CNTR_[FLOAT|DOUBLE|SIGNED|UNSIGNED]

with the definition where in time the value is relevant:

VT_PLUGIN_CNTR_[START|POINT|LAST|NEXT]

and the information about whether the value is absolute or accumulated:

VT_PLUGIN_CNTR_[ABS|ACC].

To combine these definitions, use the bitwise or “|”. An example would be:

/*data type is double,the value is valid from now until

* the next value is reported, the value is absolute.

*/
element[0].cntr_property=VT_PLUGIN_CNTR_DOUBLE |

VT_PLUGIN_CNTR_NEXT |
VT_PLUGIN_CNTR_ABS

More information on the specifications can be found in vt plugin cntr.h. To
write a value, which does not have the data type uint64 t
(VT PLUGIN CNTR UNSIGNED) it is advised to use unions to write the actual
date. If you use for example the data type double, you might want to use this:

//...
union{

uint64_t u64;
double dbl;

} value;
//...
value.dbl=measure_value();
// return value.u64 at some point

vt_plugin_cntr_metric_info *get_event_info(
char * cmd_line_name)

Input: Metric name read from the command line
Return: List of information about the selected metrics.

Note: This function is called once per process after init() is called. It is called
once for every command line metric, which refers to the plugin. The function is
also called on processes where the event might not be monitored!

4

2 Implementing a new Plugin

add counter

The add counter function is used to add counters, which may be called per
thread, per process, per host or only once. This depends on the run per variable
defined in the info struct. However, this should initialize the counting procedure,
but not start it. The returned counter ID is eminent for the further measurement
process, since VampirTrace will use this ID from now on to get results, en- and
disable the counting and so on. The plugin has to be aware of this counter and
the related counting facility structure.

int32_t add_counter(char * metric_name)
Input:metric_name, name of the selected metric (provided

by get_event_info)
Return: a unique ID (unique within the plugin)

or -1 if adding the counter failed

Note: The generated and returned ID has to be unique, multiple threads may
call this function at the same time, so if you have a PER THREAD plugin, write
the ID generation thread-save!

finalize

This method should free all resources, finalize the internal counting infrastructure
and so on.

void finalize()

Note: This function is also called per process even on those where no event
from this plugin is traced.

2.1.2 Mandatory variables

This variable defines for what type of threads/processes the counters defined in
this plugin are measured. int32 t run per

• VT PLUGIN CNTR ONCE: It is measured only once: for the first process ,
first thread on the first node used.

Example: SAN accesses from a cluster

• VT PLUGIN CNTR PER HOST: The counters of this plugin will be mea-
sured on the first process, first thread, but for all nodes

Example: Energy consumption of a node

5

2.1 General Functions

• VT PLUGIN CNTR PER PROCESS: The counters of this plugin will be
measured for all processes, but only for the first thread.

Example: Active threads per process.

• VT PLUGIN CNTR PER THREAD: The counters of this plugin will be mea-
sured for all threads of all processes.

Example: Page faults per thread.

The implications deriving from this variable are described in the section “Types
of plugins” int32 t synch

• VT PLUGIN CNTR SYNCH: A current value of the events of this plugins is
queried whenever a VampirTrace event occurs.

• VT PLUGIN CNTR ASYNCH EVENT: The events are collected asynchronously
by the plugin. Whenever there’s a VampirTrace event, all ASYNCH plugin
events are collected by VampirTrace.

• VT PLUGIN CNTR ASYNCH POST MORTEM: The events are collected
asynchronously by the plugin. When VampirTrace terminates, all events
are collected from such plugins by VampirTrace.

• VT PLUGIN CNTR ASYNCH CALLBACK: The events are collected asyn-
chronously by the plugin. The plugin calls a callback function for every
event which occurs.

uint32 t vt plugin cntr version should always be set to
VT PLUGIN CNTR VERSION to allow compatiblity checks.

2.1.3 Optional functions

These functions can be implemented in the plugin and will be evaluated by Vam-
pirTrace. However, if they are not implemented, they will be ignored but the
tracing is still valid.

enable counter

This function should enable the counting of an event. It should run fast (if possi-
ble). The function might be called per thread, so be thread save within it.

int32_t enable_counter(int32_t counter_id)
Input: ID, id of the counter to enable (was generated

by add_counter(...))
Return: whether successfull (0) or not (!=0)

6

2 Implementing a new Plugin

Note: There might be multiple enable counter calls which are called consecu-
tively.

disable counter

This function should disable the counting of an event. It should run fast (if possi-
ble). The function might be called per thread, so be thread save within it.

int32_t disable_counter(int32_t counter_id)
Input: ID, id of the counter to disable (was generated

by add_counter(...))
Return: whether successfull (0) or not (!=0)

Note: There might be multiple disable counter calls which are called consecu-
tively.

2.2 Types of plugins and functions per type

There are several types of plugins, which may be implemented. These vary in
the way they are called as well as in the functions to implement.
The type of plugin has to be specified in the info variable “synch” and has to be
one of the values defined in enum vt plugin cntr synch.

2.2.1 Synchronous plugins

Synchronous plugins are called whenever an event is generated by VampirTrace.
E.g. when a function is entered and exited, the current value is get and stored
for all available plugins.
Pro:

• There is no need to measure the time (and convert it), but only to report
the current value.

• The implementation is pretty easy, since most functionality is not needed.

Contra:

• The functionality is pretty limited, since no counter events between Vampir-
Trace events can be counted.

Synchronous plugins have to implement the following function:

uint64_t get_current_value(int32_t counter_id)
Input: counter, defines the counter id provided by

add_counter(...)
Return: the current value of the counter

7

2.2 Types of plugins and functions per type

2.2.2 Asynchronous events

Asynchronous events collect data themselves, reporting it to VampirTrace when-
ever it is needed. They provide VampirTrace with both: time stamp and value,
defined in the vt plugin cntr timevalue struct. They are available since
VampirTrace version 5.11. As additional funtions, they have to implement:

void set_pform_wtime_function(
uint64_t (*pform_wtime)(void))

Input: A function, that creates VampirTrace
compatible timestamps

Note: This is the only function that is called before init().

Providing timestamps

All times within VampirTrace are reported using an internal timing method, which
generates timestamps that are not compatible with yours. Never. (Since they
may change from platform to platform).
Changing your time getting method can be more or less complicated, depending
on how you get timestamps and how you use them. It is simple if you get the
timestamps yourself within the asynchronous thread. Just store the wtime func-
tion, VampirTrace passes to you before starting the init function. Use this wtime
function to get a valid timestamp.
If you get the time stamp from some sort of external process or another task it
is not that simple. In this case, you need to take timestamps with wtime and
your timer, to build up a formula, which recalculates the original time stamps.
Example: your timer (gettime()) delivers milliseconds

uint64_t start_my_time=gettime();
uint64_t start_vt_time=wtime();
// do initialization (hopefully it will be long enough)
. . .
uint64_t end_my_time=gettime();
uint64_t end_vt_time=wtime();
// how much faster/slower is your timer compared to ours
double factor=

(end_vt_time-start_vt_time)/(end_my_time-start_my_time);
// when did the timer start
double additional=start_vt_time-factor*start_my_time;
//generate future timestamps with:
uint64_t vt_timestamp=additional+my_timestamp*factor;

To gain more precision for the timer, you might do the time measuring of start and
end times over a longer period. For ASYNCH POST MORTEM or ASYNCH plugins,
you should get the end time when get all values is called for the first time.

8

2 Implementing a new Plugin

Types of asynchronous events and reporting

There are different types of asynchronous events, which are described here:

• ASYNCH Plugins of this type will be asked to report new events whenever
VampirTrace generates an event. The plugin should buffer the events which
were generated to this point. It may implement an own environment vari-
able, leting the user define the buffer size to prevent too large buffers.

These plugins will be at least asked for new events when VampirTrace fin-
ishes. Asynch plugins have to implement the following function:

uint64_t get_all_values(int32_t counter
vt_plugin_cntr_timevalue ** result_vector)

Input:
counter: defines the counter id generated by

add_counter(...)
Output:
result_vector: a pointer to the available

results (will be freed by VampirTrace,
may be NULL if no data is provided)

Return: the number of results in result_vector

• ASYNCH POST MORTEM are comparable to ASYNCH plugins. The only dif-
ference is that the get all values function is only called once (maybe
once per thread) after the tracing. Again, the buffer for data should be
large enough or configurable for these cases.

• ASYNCH CALLBACK These plugins generate and report events themselves.
They allow to use the internal VampirTrace buffer, avoiding too much mem-
ory overhead.
As additional functions, they have to implement:

int32_t set_callback_function(
void * ID,
int32_t counter_id,
int32_t (*callback_function)

(void *,vt_plugin_cntr_timevalue) callback)
)

Input:
ID: VampirTrace will provide a void pointer, which

has to be passed in every subsequent callback
for this counter

counter_id: defines the counter id generated by
add_counter(...)

callback: defines the function to call when an event

9

2.3 Order of function calling

shall be reported
Return: whether setting the callback was okay (0) or not

Note: As the callback function is provided some time after the counter is
added, you should check whether the callback function and the callback
ID was set before you try to use it. Return values of the callback func-
tion: When the plugin calls the callback funtion, a value from the enum
vt plugin callback return is returned.

These values are:

– VT PLUGIN CNTR CALLBACK OK - the value has been stored in a buffer

– VT PLUGIN CNTR CALLBACK BUFFER FULL - the value could not be
stored as the buffer is already full (try setting the environment variable
VT PLUGIN CNTR CALLBACK BUFFER).

– VT PLUGIN CNTR CALLBACK TRACE OFF PERMANENT - the plugin can
shut down, as tracing for the current task is permanently disabled.
This is the case when the number of maximal flushes is reached.

Note: For older VampirTrace versions (¡5.11), this enum does not exist.
Other return values are possible (e.g. for unexpected errors).

• All plugins which create an additional thread to generate the events should
implement the following function to prevent sampling threads from being
traced.

int32_t is_thread_registered()
Return: Whether the calling thread was created

by this plugin (1) or not (0).

2.3 Order of function calling

The funtions described above are called in the following order:

1. get info() - once per plugin

2. set pform wtime function() - once per plugin for asynchr. plugins

3. init() - once per plugin

4. get event info() - per selected event in the environment variable

5. add counter() - per selected event per thread received by get event info()

6. enable counter() - per added counter per thread

7. sequence of the following function calls in any order per thread

10

2 Implementing a new Plugin

a) get all values() - per added asynchr. event counter

b) get current value() - per added synchr. counter

c) disable counter() followed by an enable counter() - per added
counter

8. get all values() - per added asynchr. post mortem counter per thread

9. disable counter() - per added counter per thread

10. finalize() - once per plugin

11

3 Building a plugin

3 Building a plugin

All plugins have to be build as shared library, so it can be load dynamically while
executing the tracing. This is how a Makefile might look like:

gcc -c -fPIC myPlugin.c -o libMyPlugin.o \
-I/home/user/vampirtrace/include

gcc -shared -Wl,-soname,libMyPlugin.so \
-o libMyPlugin.so libMyPlugin.o

First the plugin is compiled to an object. The include path of the VampirTrace
installation has to be adapted that it matches the compiling system. Second the
object file is linked to a shared library. Most plugins will make use of thread syn-
chronization calls like pthread mutex (un)lock and external libraries. These
have to be passed to the linker (e.g. -lpthread)

13

4 Challenges

4 Challenges

4.1 Task Availability

VampirTrace reuses thread IDs. If you have for example a per thread counter
which measures hardware performance events and use it on an OpenMP or
pthread parallel program, the task, which calls the plugins functions and pass
counter ids may change during execution. In this case it is the developers job to
check the calling pid. This should be done whenever the counter is enabled. The
developer should close the previously set up counter for the non-existent thread
in this case and use the new one. A task is defined as working and available only
between enable- and disable counters. After a counter is disabled, the operating
system task id (tid) of the calling thread may change. For processes a plugin
developer can assume that the task is valid from init to finalize.

4.2 Limited Memory for Callback Plugins

This problem can occur when callback plugins generate events much faster then
VampirTrace events occur. The internal buffer is flushed every time such an event
is recorded. To circumvent this limitation, one can adapt the buffer size available
for callback values. Each callback value has a size of 16 byte. Set the envi-
ronment variable VT PLUGIN CNTR CALLBACK BUFFER to change the amount
of available buffer per threaed. The value is passed in bytes. The developer may
post a message with a hint to this variable when reporting a value via the callback
function fails with return value VT PLUGIN CNTR CALLBACK BUFFER FULL.

4.3 Locking Code Sections Within a Plugin

A useful per thread plugin itself is not thread safe by default. This limits the over-
head of function calling, but hardens the work for the plugin developer. Thread
locking mechanisms are highly platform dependend. Most systems support
pthreads, so we recommend to use pthread mutex lock and pthread mutex unlock
from pthread.h.

Known functions which are concurring are all those which are called per thread.
The plugin developer has to guarantee that these are thread save (for critical
sections).

15

5 Example

5 Example

This section presents a small example for synchronous counters:

/*
* This plugin will add random values for every VampirTrace

* event in your trace

*
* Compile it with

* cc -c -fPIC random_plugin.c -o RandomPlugin.o

* -I/path/to/vtrace

* Link it with

* cc -L/path/to/vtrace -shared\

* -Wl,-soname,libRandomPlugin.so \

* -o libRandomPlugin.so RandomPlugin.o

* Copy it to a folder in LD_LIBRARY_PATH or add the

* current path with

* export LD_LIBRARY_PATH=$PWD:$LD_LIBRARY_PATH

* Use it with setting:

* export VT_PLUGIN_CNTR_METRICS="RandomPlugin_banana"

* To add one counter that is named "banana" including

* random numbers.

* Set it to "RandomPlugin_*" to add NUMBER_RANDOM_COUNTER

* counters numbered from 0 to NUMBER_RANDOM_COUNTER-1

*/

#include <vampirtrace/vt_plugin_cntr.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
/* mutex to be thread save */
#include <pthread.h>

#define NUMBER_RANDOM_COUNTER 16

static pthread_mutex_t add_counter_mutex;

static int32_t nr=0;

17

int32_t init(){
/* check if pthread mutex can be created */
return pthread_mutex_init(&add_counter_mutex, NULL);

}

int32_t add_counter(char * event_name){
/* id generation has to be thread save */
int id;
pthread_mutex_lock(&add_counter_mutex);
id=nr;
nr++;
pthread_mutex_unlock(&add_counter_mutex);
return id;

}

vt_plugin_cntr_metric_info * get_event_info(
char * event_name){

vt_plugin_cntr_metric_info * return_values;
char name_buffer[255];
int i;
/* if wildcard, add some random counters */
if (strcmp(event_name,"*")==0){

return_values= malloc((NUMBER_RANDOM_COUNTER+1) *
sizeof(vt_plugin_cntr_metric_info));

for (i=0;i<NUMBER_RANDOM_COUNTER;i++){
sprintf(name_buffer,"random counter #%i",i);
return_values[i].name=strdup(name_buffer);
return_values[i].unit=NULL;
return_values[i].cntr_property=
VT_PLUGIN_CNTR_LAST|VT_PLUGIN_CNTR_ABS|
VT_PLUGIN_CNTR_UNSIGNED;

}
return_values[NUMBER_RANDOM_COUNTER].name=NULL;

/* if no wildcard is given create one random counter
with the passed name */

} else{
return_values= malloc(2*

sizeof(vt_plugin_cntr_metric_info));
sprintf(name_buffer,

"random counter #%s",event_name);
return_values[0].name=strdup(name_buffer);
return_values[0].unit=NULL;

18

5 Example

return_values[0].cntr_property=
VT_PLUGIN_CNTR_LAST|VT_PLUGIN_CNTR_ABS|
VT_PLUGIN_CNTR_UNSIGNED;

return_values[1].name=NULL;
}
return return_values;

}

uint64_t get_value(int32_t counterIndex){
return rand();

}

void fini(){
pthread_mutex_destroy(&add_counter_mutex);

}

vt_plugin_cntr_info get_info(){
vt_plugin_cntr_info info;
memset(&info,0,sizeof(vt_plugin_cntr_info));
info.init=init;
info.vt_plugin_cntr_version = VT_PLUGIN_CNTR_VERSION;
info.add_counter=add_counter;
info.run_per=VT_PLUGIN_CNTR_PER_THREAD;
info.synch=VT_PLUGIN_CNTR_SYNCH;
info.get_event_info=get_event_info;
info.get_current_value=get_value;
info.finalize=fini;
return info;

}

19

	General Information
	Audience
	Installing a Plugin Counter
	Information about Plugin Counters
	Enabling a Plugin Counter

	Implementing a new Plugin
	General Functions
	Mandatory functions
	Mandatory variables
	Optional functions

	Types of plugins and functions per type
	Synchronous plugins
	Asynchronous events

	Order of function calling

	Building a plugin
	Challenges
	Task Availability
	Limited Memory for Callback Plugins
	Locking Code Sections Within a Plugin

	Example

